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SUMMARY
Immune checkpoint blockade (CPB) improves melanoma outcomes, but many patients still do not respond.
Tumor mutational burden (TMB) and tumor-infiltrating T cells are associated with response, and integrative
models improve survival prediction. However, integrating immune/tumor-intrinsic features using data from a
single assay (DNA/RNA) remains underexplored. Here, we analyzewhole-exome and bulk RNA sequencing of
tumors from new and published cohorts of 189 and 178 patients with melanoma receiving CPB, respectively.
Using DNA, we calculate T cell and B cell burdens (TCB/BCB) from rearranged TCR/Ig sequences and find
that patients with TMBhigh and TCBhigh or BCBhigh have improved outcomes compared to other patients.
By combining pairs of immune- and tumor-expressed genes, we identify three gene pairs associated with
response and survival, which validate in independent cohorts. The top model includes lymphocyte-ex-
pressed MAP4K1 and tumor-expressed TBX3. Overall, RNA or DNA-based models combining immune
and tumor measures improve predictions of melanoma CPB outcomes.
INTRODUCTION

Why only some patients respond to checkpoint blockade thera-

pies is still unclear. For example, patients with microsatellite

instability (MSI), which have high indel and mutation burden,

have higher response rates than non-MSI cases of the same tu-

mor type, but the predictive value of TMB is not always

strong.7–10 Also, while T cells are crucial for responses, their pres-
Cell Repo
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ence alone does not dictate whether patients will benefit from

checkpoint blockade (CPB).4,7,11–15 Studies of acquired resis-

tance have discovered rare mutations associated with resis-

tance,3,16–19 but these do not explain the majority of cases.

Many studies have identified mechanisms of response or

resistance to CPB. Initially, TMB was identified as a predictor

of melanoma CPB response.1,20 A later study demonstrated

an association between TMB as a continuous variable and
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overall survival (OS) for multiple tumor types,9 but melanoma

patients with high TMB (above the 20th or 30th percentile) did

not have longer OS in this study.9,21 Additionally, others have

identified sun exposure or melanoma subtype as factors con-

founding the association of TMB with CPB response,7,22 but

these results were not validated in independent cohorts. Muta-

tions in SERPINB3/4 were associated with CPB outcomes in

two cohorts,19 but this finding was not reproduced in a

meta-analysis.23 This meta-analysis found that many CPB pre-

dictors were not significant when analyzing multiple cohorts,

and even fewer were significant in independent data, but their

predictor validated in independent cohorts.23 Thus, meta-anal-

ysis of large cohorts and validation in independent cohorts

are crucial for identifying robust features underlying CPB

response.

Whilemost studies haveanalyzedeithermalignant3,4,7,9,10,16,24–28

or microenvironmental11,12,29–34 features, integrative models have

improved predictions of CPB outcomes. For example, integrating

TMB with immune expression signatures in multimodal datasets

improved stratification of melanoma OS after CPB in multiple

studies.35,36 Additionally, TMB from tumor or cfDNA combined

withstaining forPD-L1 improvedpredictionof lungcancer response

toanti-PD-L137orcombinationCTLA-4/PD-1.38A limitationof these

studies is the use of multiple assays that require large samples and

multiple nucleic acid isolation techniques.

To address some of these limitations, we analyzed tumor

exomes and transcriptomes from patients with melanoma

receiving CPB and derived several DNA or RNA-based pre-treat-

ment features predictive of OS and response. First, combining

TMB with quantification of T or B cell abundance using only

whole-exome sequencing (WES) data identified a subgroup of

patients with high immune infiltration and high TMB that are

more likely to benefit from CPB. Next, using transcriptomic

data, we found the combination of transcription factor TBX3,

expressed in poorly differentiated melanomas, with MAP4K1,

expressed in lymphocytes and dendritic cells, to be predictive

of OS and response in a meta-analysis and an independent sec-

ondary meta-analysis cohort. Overall, this study serves as a

resource for investigating CPB outcome predictors and im-

proves knowledge of potential mechanisms of response or resis-

tance to immunotherapy.

RESULTS

DNA and RNA meta-analysis in melanoma patients
treated with CPB
To identify factors that predict CPB response and OS, we

sequenced DNA and RNA from melanoma samples before and

after CPB. We performed WES of 109 samples from 56 patients

(of which 37 patients had matched pre/post-treatment biopsies)

and bulk RNA sequencing (RNA-seq) of 88 samples from 48 pa-

tients. We aggregated these data with published WES1,2,3 and

bulk RNA-seq1,4,5 (Table S1; Figure S1). In total, we analyzed

258 DNA WES samples from 189 patients (52 with matched

pre/post-treatment samples) and 261 bulk RNA-seq samples

from 178 patients (68withmatched pre/post-treatment samples;

Table S1). Overall, 59 patients had both pre-treatment WES and

RNA-seq data and 154 patients had pre-treatment RNA-seq. For
2 Cell Reports Medicine 3, 100500, February 15, 2022
MGHpatients, we determined response based on a combination

of radiographic measurements routinely performed on all pa-

tients with clinical evaluations (range 4–12 weeks after start of

treatment), and we defined OS from initiation of therapy until

death or last follow-up. For the publishedWES and RNA-seq co-

horts, we used OS and their definitions for response (STAR

Methods).
Combining TMB with DNA-based measures of immune
infiltration improves predictions of CPB outcomes
Our analysis of WES data (n = 189 patients, Figure S1) identified

significantly mutated genes, somatic copy number alterations,

andmutation signatures (Table S2), similar to previous studies.39

As others observed,1,4,20 we found that patients with TMB above

median (TMBhigh) or TMB above 10mutations/Mb had longer OS

after CPB (TMBhigh log-rank p = 0.015, HR 1.56, Figure 1A; Fig-

ure S2). However, TMB was not significantly higher in re-

sponders than non-responders (Wilcoxon p = 0.13, Figure 1A).

Neoantigen burden and clonal TMB highly correlated with TMB

(rho = 0.99 and 0.97 respectively) but did not provide predictive

power over TMB (Figure S2). Though aneuploidy is associated

with poor CPB outcomes in some studies,2,40 we found that tu-

mor ploidy was not associated with OS (log-rank p = 0.35). Also,

survival models using the mutation status of single genes did not

identify associations passing multiple hypothesis correction

(Figure S2), likely due to lack of power.10 We identified somatic

mutations in B2M that were present in WES data of tumors bio-

psied after progression and absent from pretreatment biopsies

or cell lines derived from pre-treatment samples3,16 but did not

identify novel genes with mutations exclusive to post-treatment

tumors (Figures S2 and S3). Consistent with prior work,7 we

found that tumor purity below median was associated with OS

(log-rank p = 0.00094) but not response (Figure 1B). Since purity

and TMB were not correlated (rho = �0.03, Figure 1C), we com-

bined these factors and found that the subgroup with TMBhigh

and low tumor purity had longer OS (log-rank p = 0.0037, Fig-

ure 1D; Figure S2) but not higher response (Figure 1E). While sin-

gle-gene analyses did not identify important features, the anal-

ysis of tumor purity and TMB suggests that combining tumor

and immune features may improve outcome models.

Since T and B cell infiltration are associated with response

to CPB and are inversely correlated with tumor

purity,1,2,4,12,32,33,35,41 we next considered the predictive value

of T and B cell infiltration quantified using rearranged T cell re-

ceptor (TCR) and immunoglobulin (Ig) sequences, respectively,

from RNA. Deep TCR and Ig repertoire sequencing is required

for analysis of clonotype diversity, but analysis of TCR and Ig

levels in bulk RNA-seq or WES data can quantify T or B cell infil-

tration. High TCR or Ig read counts in pre-treatment RNA-seq

samples (n = 154) (TCRRNA and IgRNA respectively) were associ-

ated with OS and response (Figures 2A and 2B; Table S3). More-

over, TCRRNA and IgRNA correlated highly with expression of T or

B cell markers (Figures 2C ad 2D). Thus, we created RNA-based

metrics of T or B cell burden (TCBRNA or BCBRNA) using the num-

ber of rearranged TCR or Ig reads, respectively (STARMethods),

which were consistent across cohorts and correlated with each

other (rho = 0.67; Figure S4). Patients with high TCBRNA and
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Figure 1. TMB, tumor purity, and their combination associate with CPB outcomes

(A and B) Kaplan-Meier curve (left) and responder/non-responder box-plots (right) for patients with high (above median) or low (below median) TMB (A) or tumor

purity (B). P values in right panels from Wilcoxon tests.

(C) Correlation between TMB and tumor purity with P value for spearman correlation.

(D and E) Kaplan-Meier curve (D) or response (E) for the TMBhigh, low tumor purity subgroup with P value from Fisher’s exact test.
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BCBRNA had longer OS but not increased response (Figure 2E;

Figure S4).

To extend the association between TCB/BCB and outcome to

a larger cohort, we generated metrics from DNA, TCBDNA and

BCBDNA (Table S3). Since we did not perform targeted TCR

sequencing but rather used WES data, we first verified that the

RNA and DNA-based metrics were correlated using 35 cases

with DNA and RNA extracted from the same area (Figures 2F

and 2G; Table S3). Also, we detected shared TCR and Ig

CDR3 sequences across DNA and RNA (Figure 2H), with

increased sharing in samples with higher TCBDNA or BCBDNA.

As TCBDNA and BCBDNA levels differed between cohorts, we

classified samples as above/below median within each cohort

and found that TCBDNA and BCBDNA associated with OS, as

did their combination (Figures 2I–2K; Figure S5). Interestingly,

a subset of samples had higher BCBRNA than BCBDNA. When

we compared BCB and TCB levels for DNA and RNA, we found

that TCBDNA was higher than BCBDNA, consistent with CIBER-

SORTx42; however, BCBRNA was higher than TCBRNA (Figures

S5J–S5L). We compared BCBRNA and single-cell RNA

(scRNA)-derived B cell signatures43 and found that BCBRNA

correlated more strongly with a plasma B cell signature than a

naive B cell signature (Figures S5M and S5N). This suggests

that BCBRNA is partially driven by the high expression of Igs in
plasma B cells, and BCBDNA may reflect B cell frequency more

accurately since only one copy of a rearranged Ig is present in

DNA per cell. These results show that lymphocyte infiltration

can be quantified with rearranged TCR/Ig reads from tumor

exomes alone and is associated with OS.

Since TMB did not correlate with TCBDNA (rho = 0.03, Fig-

ure S6), we tested a model combining these tumor and immune

features and found that patients with TMBhigh and TCBDNA
high

survived longer (p = 3.6 3 10�4, HR 2.28, Figures 2L and 2M)

and had a higher response rate (p = 0.028, OR = 2.18, Figure 2N).

This combinedmodel was superior tomodels incorporating TMB

or TCBDNA alone (likelihood ratio test [LRT] p = 0.0036 and 0.038,

respectively). Similarly, patients with TMBhigh and BCBDNA
high

had longer OS and higher response rates (log-rank p = 1.6 3

10�3, Fisher p = 0.021, Figures S6C and S6D), but a model

with TMB, TCBDNA, and BCBDNA did not provide additional pre-

dictive value (Figures S6F–S6I). To assess why the TMB and TCB

model outperformed the TMB and purity model, we estimated

cell-type composition in RNA with CIBERSORTx. The proportion

of melanoma cells in RNA correlated with the DNA-based esti-

mate of tumor purity.While non-tumor cells consisted of both im-

mune and stromal cells, immune cells were more abundant than

stromal cells (Wilcoxon p = 0.016), and we observed that both

proportions negatively correlated with melanoma cell fraction
Cell Reports Medicine 3, 100500, February 15, 2022 3
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(Figures S7A–S7F). Thus, tumor purity captures immune and

stromal components, while TCB/BCB only reflect immune cell

abundance. We also analyzed stage III/IV melanomas from The

Cancer Genome Atlas (TCGA, Table S3, Figure S8) and found

that the TMBhigh, TCBDNA
high subgroup had increased survival

(log-rank p = 0.025, Figures S8D–S8K). Thus, through combining

tumor and immune features by quantifying TMB and TCBDNA

from WES alone, we were able to identify patients with a higher

chance of benefiting from CPB.

Previous studies have demonstrated expansion of T cell

clones after CPB11,44 and that immune infiltration is associated

with outcome in patients receiving anti-CTLA-4 prior to anti-

PD-1 but not in CTLA-4-naive patients.7 Analysis of paired pre/

post-treatment samples showed that TCB but not BCB

increased after treatment (Table S3; Figure S9). Additionally, in-

creases in TCBRNA but not TCBDNA were specific to CTLA-4

naive patients. Our results are consistent with the association

of pre-treatment levels of both T and B cells with outcome but

suggest that CPB may induce T cell but not B cell expansion.

RNA-seq analysis identifies melanoma subtypes
associated with immunotherapy survival
Expression-based cancer subtypes have been linked with sur-

vival both with or without immunotherapy.15,39,45–47 Using bulk

RNA-seq from 469 TCGA melanoma specimens (101 primary

and 368metastatic biopsies39), we identified 5 robust tumor sub-

types with Bayesian non-negative matrix factorization (NMF)

clustering48 (Table S4; Figure S10). As expected from previous

studies,1,4 one subtype had high levels of immune infiltrate (Im-

mune), and a second had high levels of keratin expression (Ker-

atin-high), likely due to keratinocytes. The other three subtypes

were associated with the degree of melanocyte differentiation.

Two subtypes were classified by expression of MITF (MITF-low

and MITF-high) and the third by intermediate melanocyte differ-

entiation (Intermediate) (Figure S10). TheMITF-low and Immune

subtypes were concordant with TCGA subtypes,39 and the

MITF-high, Intermediate and MITF-low subtypes were closely

related to differentiation states identified inmelanoma cell lines49

(Figure S10). The poorly differentiatedMITF-low subtype resem-

bles neural crest stem cells and is associated with resistance to

targeted therapies50,51 and immunotherapies.5 TCBRNA and

BCBRNA were higher in Immune subtype tumors (Figure S10).

In TCGA data, the subtypes were strongly associated with sur-

vival for all (log-rank p = 2 3 10�10, Figure S10K) and for stage

III/IV patients (p = 2.18 3 10�6, Figure 3A). In RNA-seq data

from pre-immunotherapy patients (n = 154), after batch-effects
Figure 2. TCR/Ig rearrangements in DNA and RNA quantify immune in
(A and B) Kaplan-Meier curve for patients with high/low TCRRNA (A) or IgRNA (B) an

panels from Wilcoxon tests.

(C and D) Correlation between TCRRNA and T cell gene expression (C) or IgRNA a

(E) Kaplan-Meier curve for RNA T cell burden (TCBRNA) high, B cell burden (BCB

(F and G) Correlation between TCBRNA and TCBDNA (F) or BCBRNA and TCBDNA (G

with P values for spearman correlations.

(H) Fraction of cases with TCR or Ig CDR3 clonotypes shared between RNA and

tumor.

(I–M) Kaplan-Meier curve for patients with high/low TCBDNA (I), high/lowBCBDNA (J

all TMB and TCBDNA subgroups (M).

(N) Response rate for the TMBhigh, TCBDNA
high subgroup with P value from Fishe
correction between cohorts (Table S5; Figures S11A–S11G),

we found that tumor subtypes were associated with post-immu-

notherapy OS (log-rank p = 0.019, Figures 3B and 3C) but not

response (Figure S11H), with the Immune subtype associated

with the longest OS (Fisher p = 0.035, HR = 1.73, Figure 3D).

Identification and validation of gene-pair models
combining tumor and immune genes to predict CPB
outcomes
To pinpoint gene-expression markers of outcome, we identified

genes differentially expressed between patients with OS >1 year

(long OS) and patients with OS <1 year (short OS), irrespective of

subtype (Figure 3E, Table S5, q < 0.05). We identified 83 genes

differentially expressed between long and short OS patients

(55 overexpressed in long OS patients, 28 overexpressed in

short OS patients). Genes associated with long OS included T

and B lymphocyte expressed genes (CD3E, CD3G, LTB, SELL,

SLAMF6, CD52, CD79A, CXCL13,MAP4K1), and genes associ-

ated with short OS included multiple tumor-expressed genes

(TBX3, EFNB2, NREP, S100A2, AGER). We also identified 101

genes differentially expressed between responders and non-re-

sponders, which overlapped with the 83 genes associated with

OS (29/101, p = 8.16 3 10�41, Figure S12). We next analyzed

the 55 genes associated with long OS and found that most

were expressed in immune cells, including lymphocytes and

memory CD8 T cells, which are critical for anti-tumor immunity12

(Figure 3F; Figure S12). In contrast, the 28 genes associated with

short OS were highly expressed in melanoma cell lines, with the

highest expression in the MITF-low subtype (Figure 3F; Figures

S12G and S12H). We found similar patterns for genes differen-

tially expressed between responders and non-responders (Table

S5; Figure S13).

Since previous studies combined tumor and immune features

to improve the prediction of CPB outcomes35–38 and the combi-

nation of TMB with TCBDNA was associated with outcome, we

created models using gene pairs by combining immune and tu-

mor-associated genes. We tested all pairwise combinations of

the 83 OS differentially expressed genes as predictors of OS

and response (Table S5). Additionally, we tested a metagene-

pair model which averaged the normalized expression of the

55 long OS genes as one metagene and the 28 short OS genes

as the other metagene. This metagene-pair model was highly

predictive of response and OS (Figures S13F and S13G). Finally,

we found that models based on pairs of short OS genes were

significantly worse than other gene-pair models (Table S5; Fig-

ures S13H–S13J).
filtration and predict CPB outcome when combined with TMB
d TCRRNA (A) or IgRNA (B) for responders and non-responders. P values in right

nd B cell gene expression (D), with P values for spearman correlations.

RNA) high subgroup.

) for patients with DNA and RNA extracted from the same location in the tumor,

DNA, for patients with DNA and RNA extracted from the same location in the

), TCBDNA
high, BCBDNA

high subgroup (K), TMBhigh, TCBDNA
high subgroup (L), and

r’s exact test.

Cell Reports Medicine 3, 100500, February 15, 2022 5
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Figure 3. Melanoma gene-expression markers of survival

(A) Kaplan-Meier curve by expression subtype for TCGA melanoma stage III/IV patients

(B) Heatmap of marker gene expression for pre-immunotherapy (primary cohort n = 154) patients grouped by subtype

(C and D) Kaplan-Meier curve by subtype for primary cohort (C) and for immune subtype patients (D)

(E) Differential expression between patients with OS >1 year (long OS) and patients with OS <1 year (short OS) in the primary cohort using DESeq2.

(F) Expression of differentially expressed genes in melanoma CCLE cell lines and Human Protein Atlas blood cell types
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After testing all pairwise models, we identified 3 gene pairs

significantly associated with OS and response (Bonferroni-cor-

rected p < 0.05, Figure 4A; Figures S13 and S14). The three pairs

were MAP4K1&TBX3, MAP4K1&AGER and the metagene-pair

model. MAP4K1 is expressed in multiple immune cell types

including T and B lymphocytes as well as dendritic cells.52,53 In

contrast, TBX3, AGER, and the short OS metagene are most

highly expressed in the dedifferentiated MITF-low melanoma

subtype (Figure S14). Next, we compared the three gene-pair

models and TCBRNA to six published models of CPB outcomes:

CD274 (PD-L1) expression, GEP, CYT, IMPRES, TIDE, andMHC

II.7,35,54–57 We computed values for each predictor for each pa-

tient, and, when we clustered patients, one cluster had high im-

mune infiltration and high values for immune-based models (Fig-

ure 4B; Table S5). Additionally, many patients with low immune

infiltration and high values for tumor-associated predictors had

Intermediate or MITF-low subtype tumors (Figure 4B). We found

that the three gene-pair models outperformed the previous

models in predictions of response and OS (Figures 4C and 4D;

Figures S14I–S14K). We also tested the addition of TMB to the

gene-pair models, though there were few cases (n = 59) with

both WES and RNA-seq data. We found that TMB did not add

to the response models (DeLong’s test p > 0.05) or the meta-

gene-pair model for OS (LRT p = 0.13), but TMB significantly

improved the MAP4K1&AGER and MAP4K1&TBX3 models for

OS (LRT p = 0.03, 0.02, respectively, Figures S14A–S14D).

Studies of larger cohorts with DNA and RNA profiling will be

required to evaluate combining TMB with these models. Finally,

to assess the robustness of the gene-pair models, we performed

a cross-validation analysis and found that increasing the training

set size (1) increased the number of gene-pair models discov-

ered, (2) increased the robustness of the long OS metagene,

but the short OS metagene was still variable, and (3) the top

gene-pair models were repeatedly discovered in training sets

but were rarely significant in the held out validation sets, support-

ing the need for larger datasets (Table S5; Figure S15).

To confirm our findings in independent data, we merged two

cohorts of melanoma patients receiving PD-1 or combination

CTLA-4/PD-16,7 (n = 180), which we refer to as the ‘‘secondary

cohort’’ (Figure 4E).We found that patients with Immune subtype

tumors in the secondary cohort had longerOS thanother patients

(log-rank p = 0.022, Figure 4F; Table S6; Figure S16). When we

tested the performance of the three gene-pair models, all three

validated in the secondary cohortwithBonferroni p<0.05 for pre-
Figure 4. Development and validation of RNA-based gene-pair models

(A) Performance of gene-pair models in predictions of OS (Cox model log-rank P v

three models with Bonferroni p < 0.05 labeled.

(B) Heatmap of values for published immunotherapy models and top gene pairs.

(C and D) Performance of gene-pair models in comparison to published models

primary cohort.

(E) Schematic of independent secondary cohort.

(F) Kaplan-Meier curve of immune subtype patients in the secondary cohort.

(G and H) Performance of gene-pair models in comparison to published models

secondary cohort.

(I and J) Forest plot of MAP4K1&TBX3 OS model performance in the primary (I)

hazard ratio estimates and starred P values are from Wald tests for each gene.

(K and L) OS of patients stratified to high/low risk using MAP4K1 and TBX3 expr

(M) Analysis of melanoma cell lines shows that TBX3 forms a gradient of express
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dictions of OS and response. However, for predictions of

response in the secondary cohort, their performance was statis-

tically equivalent to those of previous models (DeLong’s test p >

0.05), with AUC andC-index values between 0.6 and 0.7 (Figures

4G and 4H; Table S6; Figures S17A–S17D).

The top performing gene-pair model in the secondary cohort

was the MAP4K1&TBX3 model (Figures 4G and 4H). In Cox

models incorporating MAP4K1 and TBX3, both genes were sig-

nificant in both the primary and the secondary cohorts (Figures 4I

and 4J). As expected, patient stratification into risk groups using

MAP4K1 and TBX3 expression was also associated with OS in

both cohorts (Figures 4K and 4L; Figure S17). Treatment (PD-1

versus combination CTLA-4/PD-1) was associated with OS in

the secondary cohort, but in a Cox model incorporating

MAP4K1, TBX3, and treatment, all three were significant (Figures

S17J and S17K). When we analyzed the models in individual co-

horts, their performance was variable (Table S6; Figure S18).

Additionally, by analyzing patients grouped by therapy, we

observed that the gene-pair models were predictive of OS for pa-

tients treated with either CTLA-4 or PD-1, demonstrating that

these models are predictive in multiple treatment contexts (Fig-

ure S19). Similar to published models, the gene-pairs models

were not predictive of OS for patients treated with combination

PD-1/CTLA-4. However, in contrast to published models, the

gene-pair models were predictive of OS for patients treated

with PD-1 and no prior CTLA-4. This treatment context is rele-

vant to current clinical practice as CTLA-4 monotherapy is not

used in the first line for melanoma. In summary, the top gene-

pair models were able to predict outcomes, and the simplicity

of these models points to potential biological connections be-

tween gene expression and outcome.

TBX3 is a marker of poorly differentiated melanomas
To better understand the role of TBX3, we analyzedmultiple mel-

anoma datasets. First, TBX3 was expressed in most melanoma

cell lines49 except for well-differentiated ones with high MITF

expression (Figure 4M), in concordance with high TBX3 expres-

sion in MITF-low tumors (Figure S14). Second, genes negatively

correlated with TBX3 expression in melanoma cell lines58 were

enriched for pigmentation gene sets (Table S6; Figure S20A).

Third, TBX3 was expressed in melanoma cells but rarely in

non-tumor cells based on melanoma scRNA-seq data51,59 and

was more highly expressed in melanoma cells expressing neural

crest marker NGFR (Figures S20B–S20F), consistent with prior
to predict CPB outcomes

alue) and response (logistic regression AUC P value) in the primary cohort, with

in significance (C) and effect size (D) of predictions of response and OS in the

in significance (G) and effect size (H) of predictions of response and OS in the

and secondary cohorts (J). Error bars represent 95% confidence intervals for

ession in the primary (K) and secondary cohort (L).

ion across melanoma differentiation states.
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work showing that NGFR+ melanoma cells are resistant to

CPB.60 Functional studies have shown that overexpressing

TBX3 in melanoma cells enhances tumor formation and invasion

in vivo.61 In summary, TBX3 is a tumor-specific gene expressed

in poorly differentiated melanomas, and a model combining

lymphocyte-expressed MAP4K1 with TBX3 is associated with

patient outcomes after CPB. Overall, our results suggest that

models combining a metric of immune infiltration with a tumor-

derived metric associated with poor melanoma differentiation

can predict melanoma immunotherapy outcomes.

DISCUSSION

By extracting biological features from tumor DNA and RNA, we

uncovered factors predicting melanoma CPB outcomes: (1) tu-

mor purity and TMB, (2) T/B cell infiltration combined with TMB

from DNA alone, (3) expression subtyping of tumors, and (4)

expression of MAP4K1 and TBX3 (as well other gene pairs

involving an immune-associated and a tumor-associated

gene). While some features are correlated (e.g., tumor purity

and T/B cell burden), specific combinations of uncorrelated fea-

tures improved predictions of response and OS.

Our data show that integrative models measuring immune

infiltration (MAP4K1) and expression of tumor-associated genes

(TBX3) are predictive of patient outcomes. These simple gene-

pair models were as or more accurate than complex models

and provide insight into biological features. This is consistent

with previous studies that found that multivariate models

combining multiple data types can outperform single feature

models of post-immunotherapy OS (such as TMB, PD-L1 stain-

ing, or T cells alone).7,25,35,37,38 We also show that high TMB

(providing more neoantigens) combined with high TCB (indi-

cating T cell response) can predict outcome. Our results suggest

that including TCR and Ig sequences in targeted sequencing

panels, alongwith genes that allow TMB estimation, may be use-

ful for prediction of outcome using a single DNA assay. Patients

with multiple positive prognostic factors may be better served by

PD-1/PD-L1 monotherapy, whereas those with negative factors

may benefit from more aggressive combinations of therapies,

but this would need to be studied in clinical trials.

Previous work has demonstrated that clinical variables and sin-

gle-cell profiling can significantly improve models of immuno-

therapy outcomes.7,12 While our models were predictive and vali-

dated in independent data, their performance ismodest (AUCand

C-index of 0.6–0.7). In addition to the featureswe explored, others

have identified immune subtypes and germline factors associated

with immune infiltration as associated with CPB outcomes, and

additional studies are warranted to validate these findings and

test whether these factors lead to distinct resistance mecha-

nisms.62,63 Future studies will require deeper clinical, tumor, and

immune characterization of larger cohorts to discover genetic

and non-genetic predictors. To achieve this goal, the community

will need to generate and share genomic, transcriptomic, and

outcome data from patients receiving immunotherapy.

Limitations of the study
Although we developed RNA-based models that predicted out-

comes in an independent cohort, these models were trained and
tested on data from patients with varied clinical histories who

were treated with different therapies. Thus, these models are

not optimized for patients receiving a specific treatment. Addi-

tionally, since our meta-analysis was based on multiple

published cohorts, clinical annotations were limited and hetero-

geneous, making it impossible to assess whether predictors

were independent from clinical risk factors. Therefore, larger ho-

mogeneous cohorts are needed to develop more robust predic-

tors that are applicable to patients receiving the current standard

of care, and validation in prospective cohorts will be necessary.

A second limitation is the use of bulk RNA-seq which cannot

assign gene expression to a given cell type. Bulk RNA-seq has

limited resolution to identify rare cell populations. In recent years,

scRNA-seq has become standard as it can detect rare cell types

and states associated with clinical phenotypes.6,12

Third, while we identified several genes associated with clin-

ical outcomes, whether these genes can affect tumor-intrinsic

and extrinsic mechanisms of immune evasion or the tumor

microenvironment remains to be determined in future functional

studies. Leveraging human data to select candidate genes

together with in vivo CRISPR screens will enable testing of thou-

sands of hypotheses in a single experiment and link gene-

expression associations with potential causal roles using model

systems.
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STAR+METHODS
KEY RESOURCES TABLE
Reagent or resource Source Identifier

Biological samples

MGH cohort (bulk DNA and RNA) used

in this study are detailed in Table S1

Massachusetts General Hospital

and MD Anderson Cancer Center

N/A

Critical commercial assays

QIAGEN AllPrep DNA/RNA Mini Kit QIAGEN Cat# 80204

TrueSeq exome kit Illumina Cat# 20020615

Deposited data

Primary cohort- MGH samples (bulk DNA

and RNA) data

This paper dbGAP: phs002683.v1.p1. https://zenodo.org/

record/5528497

Primary cohort- Van Allen Van Allen et al. 20151 dbGAP: phs000452.v3.p1

Primary cohort- Roh Roh et al. 20172 BioProject: PRJNA369259

Primary cohort- Zaretsky Zaretsky et al. 20163 BioProject: PRJNA324705 or SRA: SRP076315

Primary cohort- Riaz Riaz et al. 20174 BioProject: PRJNA356761 or SRA: SRP094781

Primary cohort- Hugo Hugo et al. 20165 GEO: GSE78220 or SRA: SRP070710

Secondary cohort- Gide Gide et al. 20196 ENA: PRJEB23709

Secondary cohort- Liu Liu et al. 20197 dbGAP: phs000452.v3.p1

Jerby-Arnon scRNA data Jerby-Arnon et al. 201859 GEO: GSE115978

https://singlecell.broadinstitute.org/single_cell/

study/SCP109/

melanoma-immunotherapy-resistance

Human Protein Atlas Blood RNA-Seq Uhlen et al., 201964 https://www.proteinatlas.org/download/

rna_blood_cell_sample_tpm_m.tsv.zip

CCLE Barretina et al., 201258 https://data.broadinstitute.org/ccle/

CCLE_RNAseq_rsem_genes_tpm_20180929.txt.

gz

TCGA Melanoma Cancer Genome Atlas

Network. 201539
dbGAP: phs000178.v5.p5. https://app.terra.bio/

#workspaces/broad-firecloud-tcga/

TCGA_SKCM_ControlledAccess_V1-0_DATA

Software and algorithms

CGA WES Characterization pipeline Birger et al. 201765 https://app.terra.bio/#workspaces/

broad-fc-getzlab-workflows/

CGA_WES_Characterization_OpenAccess

ContEst Cibulskis et al. 201166 http://software.broadinstitute.org/cancer/cga/

contest

CrossCheckFingerprints Broad Institute Picard Tools https://broadinstitute.github.io/picard/

https://software.broadinstitute.org/gatk/

documentation/tooldocs/4.0.1.0/

picard_fingerprint_CrosscheckFingerprints.php

MuTect Cibulskis et al. 201367 https://github.com/broadinstitute/mutect

Strelka Saunders et al. 201268 https://github.com/genome-vendor/strelka

DeTiN Taylor-Weiner et al. 201869 https://github.com/getzlab/deTiN

Oncotator Ramos et al. 201570 https://github.com/broadinstitute/oncotator

OxoG and FFPE Orientation Bias filters Costello et al. 201371 http://software.broadinstitute.org/cancer/cga/

dtoxog

BLAT Realignment filter Kent et al. 200272 https://github.com/djhshih/blat

MutSig2CV Lawrence et al. 201473 https://github.com/getzlab/MutSig2CV
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Reagent or resource Source Identifier

SignatureAnalyzer Kim et al. 201674 https://github.com/broadinstitute/

getzlab-SignatureAnalyzer

POLYSOLVER Shukla et al. 201575 http://software.broadinstitute.org/cancer/cga/

polysolver

NetMHCPan 4.0 Jurtz et al. 201776 http://www.cbs.dtu.dk/services/NetMHCpan-4.0/

GATK version 4.0.8.0 Mckenna et al. 201077 https://newreleases.io/project/github/

broadinstitute/gatk/release/4.0.8.0

GISTIC 2.0 Mermel et al. 201178 https://github.com/broadinstitute/gistic2

ABSOLUTE Carter et al. 201279 http://software.broadinstitute.org/cancer/cga/

absolute

PhylogicNDT Leshchiner et al. 201980 https://github.com/broadinstitute/PhylogicNDT

GTEx RNA-Seq pipeline GTEx Consortium 202081 https://github.com/broadinstitute/gtex-pipeline/

RNA-SeqQC Graubert et al. 202182 https://github.com/getzlab/rnaseqc

ComBat Johnson et al. 200783 https://bioconductor.org/packages/release/bioc/

html/sva.html

DESeq2 Love et al. 201484 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

CIBERSORTx Newman et al. 201942 https://cibersortx.stanford.edu

MixCR v3.0.3 Bolotin et al. 201585 https://github.com/milaboratory/mixcr/releases

Melanoma dedifferentiation signature resource Tsoi et al. 201849 https://systems.crump.ucla.edu/dediff/index.php
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RESOURCE AVAILABILITY

Lead contact
Requests for information and resources should be directed to and will be fulfilled by the lead contact, Nir Hacohen (nhacohen@mgh.

harvard.edu).

Materials availability
This study did not generate new reagents.

Data and code availability
Raw sequencing data (WES and RNaseq) from this study (MGH cohort) is deposited in dbGAP with accession number

phs002683.v1.p1, and processed data is available at https://zenodo.org/record/5528497. For the primary cohort, publicly available

data was used. The Van Allen1WES and bulk RNA dataset used in this study is available in dbGAP database under accession number

phs000452.v3.p1. The Roh2 WES dataset is available under BioProject accession number PRJNA369259. The Zaretsky3 WES data-

set is available in the National Center for Biotechnology Information Sequence Read Archive under accession number SRP076315.

The Riaz4 bulk RNA dataset used in this study is available under BioProject accession number PRJNA356761 or SRA SRP094781.

The Hugo5 bulk RNA dataset used in this study is available in GEO (Gene Expression Omnibus) under accession number GSE78220.

For the secondary cohort, publicly available data from two recent publications was used. The Gide6 bulk RNA dataset is available in

the European Nucleotide Archive (ENA) under accession number PRJEB23709. The Liu7 bulk RNA dataset is available in dbGAP un-

der accession number phs000452.v3.p1. Finally, code for creating figures is available at https://zenodo.org/record/5528497.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient specimens and consent
All patients analyzed in this study (referred as the MGH cohort) provided written informed consent for the collection of tissue and

matched normal blood samples for research and genomic profiling, as approved by the Dana-Farber/Harvard Cancer Center Insti-

tutional Review Board (DF/HCC Protocol 11-181) and UTMDAnderson Cancer Center (IRB LAB00-063 and 2012-0846). All samples

in this study are frompatients withmetastaticmelanoma treatedwith checkpoint blockade therapy (Table S1) atMassachusetts Gen-

eral Hospital (Boston, MA) and University of Texas MD Anderson Cancer Center (Houston, TX). Patient response status at initial re-

staging examination for the MGH cohort was defined based on a combination of radiographic measurements routinely performed on

all patients with clinical evaluations (range 4-12 weeks after initiation of treatment), with patients achieving PR or CR for responders
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and SD or PD for nonresponders. Subsequent responses for biopsies taken during treatment were determined on the date of biopsy

acquisition based on a combination of clinical and radiographic measurements. Overall survival (OS) was defined from the date of

treatment initiation until the date of death or last follow-up.

Clinical outcomes from previously published cohorts
For the analysis of outcomes of patients from previously published cohorts, we used the published overall survival and clinical

response data. Overall survival data was reported in each study. For clinical response, we used the binary classification of clinical

outcome from each individual study. For Hugo et al., patients with PR/CR by irRECIST criteria were classified as responders, and

patients with PD by irRECIST criteria were classified as non-responders5. For Zaretsky et al., the 4 patients were classified as

PR/CR by irRECIST criteria and were classified as responders3. For Roh et al., we used the same response definitions as stated

in their paper: responders had either complete resolution of tumors or partial reduction of at least 30% in tumor size (based on im-

aging) or stable disease for over 6 months, and nonresponders had an increase of at least 20% in tumor size (based on imaging) or

stable disease for under 6 months2. We used these definitions for each sample (anti-CTLA-4 response and anti-PD-1 response) from

Roh et al. Table S1B. For Riaz et al., the authors separated patients with RECIST PD, SD and PR/CR, so we classified patients in the

same manner as the MGH cohort with RECIST PR/CR as responders and patients with RECIST PD or SD as non-responders4. Addi-

tionally, for the two patients in the Riaz cohort (Pt76_pre and Pt23_pre) that died prior to disease assessment (after 10 and 52 days

respectively), we included these patients as non-responders. For Van Allen et al., patients with durable clinical benefit (DCB, PR/CR

or SD with OS > 1 year) were classified as responders and patients with no durable clinical benefit (NDB, PD or SD with OS < 1 year)

were classified as non-responders1. For four patients in this cohort with no annotated RECIST response but very short overall survival

(MEL-IPI_Pat157, MEL-IPI_Pat166, MEL-IPI_Pat168 and MEL-IPI_Pat175 with deaths after 86, 77, 67 and 90 days respectively), we

included these patients as non-responders. Additionally, one patient with no RECIST annotation and an overall survival of 1326 days

(MEL-IPI_Pat29) was included as a responder. For Liu et al., patients with RECIST PR, CR or listed as MR (mixed response) were

classified as responders, and patients with RECIST PD or SD were classified as non-responders7. For Gide et al., patients with RE-

CIST PR/CR or SD with PFS over 6 months were classified as responders, and patients with RECIST PD or SD with PFS under

6 months were classified as non-responders6. Overall survival was available for all patients (except for one patient from the Hugo

at el. study for which survival data was missing).

METHOD DETAILS

Whole exome sequencing
Whole exome sequencing for MGH cohort samples was performed at the Broad Institute genomic platform on 109 tumor and

matched normal blood samples from 56 patients using a protocol previously described16. Briefly, 150-500ng of gDNA was extracted

using QIAGEN AllPrep DNA/RNA Mini Kit (cat# 80204). DNA was fragmented using acoustic shearing followed by size selection to

achieve library insert size distribution in the range of 300-650bp. Libraries for all samples were prepared using the Kapa HyperPrep

kit, according to manufacturer’s specifications, followed by quantification and normalization using PicoGreen to ensure equal con-

centration. Adaptor ligation was performed using the TrueSeq DNA exome kit from Illumina according to the manufacturer’s instruc-

tions. Libraries were sequenced using the HiSeq2500 with paired end 76bp reads, followed by analysis with RTA v.1.12.4.2.

Whole transcriptome sequencing of bulk tumor samples
Whole transcriptome sequencing for MGH cohort samples was performed at the Broad Institute genomic platform on 88 bulk tumor

samples from 48 metastatic melanoma patients treated with CPB therapy (53% anti-CTLA-4; 26% anti-PD-1; 11% anti-PD-L1 and

9% anti-CTLA-4+PD-1), using the Transcriptome Capture method (FFPE compatible) as previously described16. 250-500ng of pu-

rified total RNA with DV200 scores > 30%was considered acceptable for library preparation and sequencing. First a stranded cDNA

library from isolated RNAwas constructed followed by hybridization of the library to a set of DNA oligonucleotide probes to enrich the

library for mRNA transcript fragments (capturing 21,415 genes). The normalized, pooled libraries were loaded onto HiSeq2500 for a

target of 50 million 2x76bp paired reads per sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Whole-exome mutation calling
Using the Broad Picard pipeline, we aligned bams from all blood normal samples and tumor samples to hg19 using bwa 0.5.986. For so-

matic mutation calling, we used the CGA WES Characterization pipeline within the Firecloud framework (https://app.terra.bio/

#workspaces/broad-fc-getzlab-workflows/CGA_WES_Characterization_OpenAccess,65). For mutation calling, we assessed the Agi-

lent exome target regions for the Van Allen samples and the Illumina Capture Exome (ICE) target regions for samples from all other co-

horts.We first assessed cross-sample contamination levels using ContEst66 and checked for sample swaps using Picard CrossCheck-

Fingerprints (https://software.broadinstitute.org/gatk/documentation/tooldocs/4.0.1.0/picard_fingerprint_CrosscheckFingerprints.

php).We thencalled somatic single nucleotide variants usingMuTect67with the cross-samplecontamination estimates as lower bounds

for allele fraction and called somatic indels using MuTect2 and Strelka (https://github.com/broadinstitute/gatk/tree/master/scripts/
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mutect2_wdl; https://github.com/genome-vendor/strelka68). Next, we applied DeTiN to detect cases with evidence of tumor in the

exome normal sample and recover somatic mutations that had been incorrectly filtered out due to alternate reads present in the normal

sample69andweannotatedsomaticmutationsconsequencesusingOncotator70.WemergedadjacentSNVcalls andannotated themas

di-nucleotide variants as CC > TTmutations are frequently detected in sun-exposed melanomas39. To filter the somatic mutation calls,

we appliedOxoGand FFPEOrientationBias filters71 andwefiltered outmutations present in a panel of TCGAnormal samples or a panel

of Illumina Capture Exome (ICE) normal samples87. We then used a BLAT Realignment filter72 to filter out mutations that were only sup-

ported by reads that had mapped ambiguously and finally filtered out mutations using a final panel of normal samples87 that included

FFPE normal samples.

To exclude exome samples that were low quality, we excluded samples with tumor or normal mean bait coverage below 30 or

cross-sample contamination values above 5%. WES samples from the Hugo cohort had high cross-sample contamination

levels, so we did not include the WES DNA data from this cohort10. We retained one sample (Case4-Relapse) from the Zaretsky

cohort with a contamination fraction of 5.4% as this represented an important clinical scenario (acquired resistance to PD-1

therapy after a response). Moreover, we excluded samples with tumor in normal estimates above 15%, as these samples would

have reduced sensitivity for somatic mutation calling. In order to maintain high sensitivity for somatic variant calling, we

excluded samples with ABSOLUTE estimated tumor purity below 10% (described in the ABSOLUTE section below79. After

applying these filters, we retained a total of 258 WES samples from 189 patients as passing QC. Additionally, for analysis of

outcomes, in order to use a single WES sample per patient for patients with multiple samples, if the patient had multiple

WES samples we used the earliest biopsy available unless the patient was a non-responder for the first line of immunotherapy

but a responder for a subsequent line of immunotherapy, in which case we used the later sample which was directly preceding

or in some cases after the response. Finally, for patient 33 in the Roh cohort, we used the post-treatment sample (33C) rather

than the pre-treatment sample (33A) as the pre-treatment sample had tumor purity at our QC threshold level (10% tumor purity)

which severely limited the analysis of clonality. This resulted in a total of 189 WES samples for analyses of outcomes using the

combined WES data from the MGH, Van Allen, Roh and Zaretsky cohorts combined. For analyses of immune infiltration or purity

and outcome in the WES data, we excluded the two cell line samples from the Zaretsky cohort, leaving 187 WES samples for

these analyses.

We collected mean target coverage (MTC) and mean bait coverage (MBC) statistics (Table S2) for WES samples from the MGH

cohort (mean tumor MTC 199.03, standard deviation [sd] 94.66, median tumor MTC 188.61, mean tumor MBC 341.32, sd 164.65,

median tumor MBC 302.60, mean normal MTC 106.67, sd 33.57, median normal MTC 101.14, mean normal MBC 148.30, sd

49.44, median normal MBC 137.51). For the MGH samples sequenced with Illumina Capture Exome baits, the target territory was

28,665,628 bases. We also collected coverage statistics from the Roh cohort (mean tumor MTC 115.85, sd 16.26, median tumor

MTC 115.40, mean tumor MBC 183.10, sd 26.98, median tumor MBC 185.87, mean normal MTC 69.80, sd 14.79, median normal

MTC 67.97, mean normal MBC 95.00, sd 18.11, median normal MBC 91.93), Van Allen cohort (mean tumor MTC 137.07, sd

44.61, median tumor MTC 145.54, mean tumor MBC 369.26, sd 187.71, median tumor MBC 327.16, mean normal MTC 121.19,

sd 51.57, median normal MTC 124.99, mean normal MBC 295.44, sd 79.68, median normal MBC 283.12) and Zaretsky cohort

(mean tumor MTC 105.19, sd 30.88, median tumor MTC 101.42, mean tumor MBC 178.86, sd 53.09, median tumor MBC 178.25,

mean normal MTC 95.88, sd 26.74, median normal MTC 100.92, mean normal MBC 148.77, sd 38.51, median normal MBC

156.99) (Table S2).

Mutation significance analysis
WeusedMutSig2CV73,88 to identify significantly mutated driver genes in the 189melanomaWES samples. This meta-analysis cohort

was smaller than previously published melanoma analyses which included patients not treated with immunotherapy and melanoma

has a high mutation burden, so we were underpowered to discover novel melanoma drivers. We used aMutSig2CV q < 0.1 threshold

to classify genes as significantly mutated. Additionally, we excluded significantly mutated genes with a median log2(TPM+1) below 1

in CCLE melanoma cell lines (analysis of CCLE melanoma RNA-Seq data described below).

Mutation signature analysis
We used the SignatureAnalyzer Bayesian NMF approach to identify mutation signatures present in the somatic coding SNVs in the

189 melanoma WES samples74,89,90. As melanoma has a high mutation burden, we used the SignatureAnalyzer with the hypermu-

tation option, and we excluded one sample (from patient 16 in the Roh cohort) which had evidence of an MSI signature (COSMIC

Signature 2691,92). We ran the Bayesian NMF with 50 random initializations, and converged to k = 3 signatures, 44 converged to

k = 4 and 4 converged to k = 5, so we chose the solution with k = 4 with the maximum posterior probability. We compared the

four signatures to COSMIC mutational signatures using cosine similarity and we assigned mutations to signatures based on the as-

sociation probability and computed the counts and fractions of mutations assigned to signatures by sample. As expected, we iden-

tified a UV signature and a CpG signature in many samples as well as a temozolomide (TMZ) signature (as a subset of patients had

prior TMZ treatment in the Van Allen cohort)1. Additionally, we identified a fourth signature which primarily consisted of T to C mu-

tations and had some similarity to COSMIC signature 26, but this signature was only present as a small proportion of mutations in a

subset of samples.
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Neoantigen and TMB analysis
To identify neoantigens, we used normal WES samples to call germline MHC Class I alleles using POLYSOLVER75. We considered

somatic single nucleotide and di-nucleotide variants as potential neoantigens and predicted the binding affinity of all possible 9mers

and 10-mer peptide sequences that overlapped the mutated residue using NetMHCPan 4.076,93,94. We predicted binding affinities to

all six germlineMHCClass I alleles.We counted predicted binders as neoantigens if they had aNetMHCPan 4.0 percentile rank of 2 or

lower (note that certain mutations may lead to multiple neoantigens). To compute tumor mutation burden (TMB), we counted the

number of non-silent somatic SNVs, DNVs and Indels per sample, and we used log10(TMB) in continuous Cox models with overall

survival. For the analysis of TMB above or below 10 mutations/Mb in the 189 WES samples, we obtained the number of mutations

per megabase by dividing the number of non-silent somatic SNVs, DNVs and Indels by the ICE target territory andmultiplying by 106,

and we split samples using a threshold of 10 mutations/Mb.

Association of SNVs with outcome
To investigate the relationship between somatic mutations and outcomes in the 189 WES samples, we associated mutation status

with survival using Cox models which included mutation status and log10(TMB) and we associated mutation status with response

using logistic regression models which incorporated mutation status and log10(TMB). For the associations with survival and

response, we tested loss of function mutation status (loss of function mutation or wild-type) for all genes with 3 or more loss of func-

tion mutations and non-synonymous mutation status for all genes with 3 or more non-synonymous mutations. For the survival

models, we used the P value of the mutation status in the combined Cox model with log10(TMB) and for the logistic regression

response models, we used the P value of mutation status in the combined logistic regression model with log10(TMB).

Somatic copy number alteration analysis
To assess somatic copy number alterations (SCNAs) in autosomes fromWES data, we used GATK4 CNV (with GATK version 4.0.8.0,

https://github.com/gatk-workflows/gatk4-somatic-cnvs 77). We created a panel of normals to normalize the copy number data using

GATK4 CNVCNV Somatic Panel Workflow using a set of 928 normal WES samples including TCGAmelanoma, thematched normals

from the MGH, Roh, Zaretsky and Hugo cohorts (the Hugo samples were included to improve the normalization of the Zaretsky sam-

ples sequenced by the same group, even though the Hugo samples failed cross-sample contamination QC) and a set of FFPE normal

samples. We set the GATK CNV bin_length to 0 to skip binning (as recommended for WES data). Additionally, in order to be able to

compare copy number results across cohorts, we used the hg19 Illumina Capture Exome (ICE) target set with 250bp of padding as

the target list for all samples for collecting read counts for copy number calling. As this created a more heterogeneous distribution of

coverage per target, we set –maximum-zeros-in-interval-percentage=1 (the threshold of the minimum percentage of samples in the

panel of normals with zero-coverage in a target, and intervals failing this filter are removed).

We then used the GATK4 CNV Somatic Pair Workflow incorporating GATK ACNV to estimate somatic copy number alterations

using the described panel of normals for all WES samples. To allow for heterozygous SNPs to be used in estimating allelic coverage,

we set minimum-total-allele-count=10 (the minimum coverage required in the tumor to collect allelic counts at heterozygous SNP

sites). To estimate allelic copy number in GATK4 CNV, we used the GATK set of frequently polymorphic SNP sites (gs://gatk-test-

data/cnv/somatic/common_snps.interval_list). Additionally, we filtered potential germline or artifactual segments that appeared in

both the germline blood normal and the tumor sample and segments at recurrent copy number segment breakpoints. After removing

these events, gaps were imputed if the two neighboring segments had the same copy ratio and were 2.5Mb apart. Additionally, we

filtered out allelic copy number segments supported by zero heterozygous SNPs.

GISTIC analysis of significant SCNAs
We used GISTIC 2.0 to identify recurrently amplified and deleted regions in the 189 melanoma WES samples78. Similar to the mu-

tation significance analysis, we were underpowered to discover novel melanoma drivers in comparison to previous studies. We

ran GISTIC 2.0 on the GATK4 CNV segment mean log2 copy ratio (after the post-processing to remove potential germline and arti-

factual events as described).

Analysis of tumor purity and ploidy using ABSOLUTE
In order to estimate tumor purity and ploidy as well as integer copy number, we used ABSOLUTE79,95. Using the called somatic mu-

tations and somatic copy number alterations as input, we then used ABSOLUTE to generate candidate purity/ploidy solutions. We

then manually reviewed these potential ABSOLUTE solutions and selected the solution most concordant with the copy number and

mutation data. Finally, after obtaining the integer somatic copy number segments, we imputed gaps by extending the neighboring

segments to meet in the middle of the gap, and we annotated the integer copy number and LOH status of GENCODE v19 genes. For

analyses of purity and outcomes in the primary cohort, we excluded two samples from the Zaretsky cohort (Case2-Baseline and

Case3-Baseline) as they were derived from cell lines.

Analysis of longitudinal samples using PhylogicNDT
To investigate clonal dynamics in longitudinal WES samples, we used ABSOLUTE and PhylogicNDT (https://github.com/

broadinstitute/PhylogicNDT)96. After calling somatic mutations in all 123 samples from the 54 patients with WES data at multiple
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timepoints,we then took the union ofmutations called in eachpatient and then calculated the number of reference andalternate reads

present at the union of themutated sites in each sample from the patient. For this analysis of the union of mutated sites, we used non-

duplicate readswithmapping quality of at least 5 andwith a recalibrated base quality scores of at least 20 at themutated site.We then

called ABSOLUTE solutions for all samples and clustered the mutation clonality across time points using a multidimensional Dirichlet

processmodel implemented inPhylogicNDT toestimate themutation cancer cell fractions (CCFs) andsomatic copynumberalteration

clonality across samples. We plotted clonality of mutations and gene level copy number in paired biopsies, with 108 biopsies in total

from54 patients (Table S1; Figure S3). For patients in theMGHcohort with three ormore biopsies, we used the earliest twoWES sam-

ples available, except for patients 208T and 272T as these patients both had responses but then developed resistance at the time of

the third sample. For patient 208T, we used samples 208A and 208C and for patient 272Twe used samples 272A and 272C16. In addi-

tion to the analysis of longitudinal samples, we also separately applied the PhylogicNDTmutation clustering to single samples in order

to estimate the mutation CCFs, and we counted mutations as clonal if they had estimated CCFR 0.85.

RNA-Seq gene-expression analysis
In order to quantify gene expression in RNA-Seq data, we used the GTEx RNA-Seq pipeline (https://github.com/broadinstitute/

gtex-pipeline/)81, which uses STAR97 2 pass alignment followed by quantification of TPMs using RSEM98. We quantified gene

expression in TPM for all transcripts using the GENCODE v19 reference transcriptome. We derived quality control metrics from

the aligned bams using RNA-SeqQC (https://github.com/getzlab/rnaseqc)82, and we excluded samples with below 15000 genes de-

tected (where genes with 5 or more unambiguous reads were considered detected) or Exon CV MAD > 1. The Exon CV MAD is the

median absolute deviation of the coefficient of variation of the exonic coverage (which excludes the first and last 500bp of a gene).

Additionally, we performed PCA on the log2(TPM + 1) values for all protein coding genes using the MGH pre-treatment samples

(including only pre-treatment A RNA-Seq samples and not post-treatment B or C samples), and we excluded two additional samples

that were PCA outliers (samples 346AR and 9AR). We also excluded the one post-treatment sample from the Hugo cohort from anal-

ysis (Pt16-OnTx). Additionally, we re-processed the TCGA melanoma (SKCM) RNA-Seq data using the GTEx pipeline to obtain

log2(TPM+1) values.

When we performed PCA on the log2(TPM+1) values of protein coding genes (excluding genes with zero expression in all samples)

for the 154 pre-treatment samples from the primary cohort, we noted significant batch effects between cohorts (Figure S11A). The

cohorts clustered in batches based on the RNA-Seq method (polyA selection for Hugo and Riaz versus transcriptome capture for

MGH and Van Allen), so we applied ComBat83 in order to remove this batch effect. We also set all negative values following ComBat

batch correction to zero, as the input log2(TPM+1) values were non-negative. After this batch effects correction, the separate cohorts

were overlapping in PCA space (Figure S11A).

For the secondary cohort, we obtained log2(TPM+1) values in the same way using the GTEx pipeline. Upon inspecting the RNA-

SeqQC metrics for the Liu cohort, we found that 14 of the initial 121 samples failed the 15000 genes detected threshold or the Exon

CV MAD > 1 threshold, so we excluded these samples, leaving 107 samples. For the Gide cohort, no samples failed the QC thresh-

olds. For the secondary cohort analysis of RNA-Seq samples, we combined the 107 Liu samples with the 73Gide pre-treatment sam-

ples (excluding the 16 Gide early during treatment samples), leaving 180 samples in total. We observed similar batch effects in the

PCA of log2(TPM+1) values for the Gide and Liu cohorts (Figure S16A), so we applied ComBat to the full secondary cohort which

reduced the batch-specific clustering in PCA.

Quantification of TCR and Ig levels in WES and RNA-seq
To quantify T and B cell infiltration, we usedMixCR v3.0.385,99. We used theMixCR analyze shotgun pipeline with DNA or RNA as the

startingmaterial for all WES andRNA-Seq samples.We excluded TCR or Ig clonotypes with rearrangements that had a stop codon or

resulted in an out-of-frame sequence.Wequantified the number of TCR or Ig reads by summing the clone counts of reads assigned to

clonotypes. For TCRs, we included TCR alpha, beta, delta and gamma sequences. By counting these reads, we potentially included

rearrangements from CD8 T cells, CD4 T cells (some of which may be regulatory T cells) and gd T cells. For the analysis of RNA-Seq

data, in rare cases clonotypes were aligned to both a TCR and an Ig (with MixCR V region alignment allVHitsWithScore containing

both a TCR and an Ig), and we included these reads in both the TCR and the Ig counts.

As different samples had different depths of sequencing, we normalized the TCR and Ig read counts by sample coverage. For RNA-

Seq, we used the number of mapped reads from RNASeqQC, and for WES we used the number of reads aligned from samtools idx-

stats. To create the T cell burden (TCB) and B cell burden (BCB)metrics, we computed TCB= (1+TCR read count)/(aligned reads/106)

and BCB = (1+Ig read count)/(aligned reads/106), with appropriate TCR/Ig read counts and aligned read counts separately for DNA

and RNA. Additionally, we plotted TCB and BCB on log10 scales and we used log10(TCB) and log10(BCB) for outcome analysis using

Cox or logistic regression models.

TCBRNA values were slightly higher in samples from the Hugo cohort (Figure S4A) than in samples from other cohorts, but we saw

significant batch effects for both TCBDNA and BCBDNA (Figure S5A). As a result, we decided to dichotomize TCBDNA and BCBDNA

within cohorts, so we calculated median(TCBDNA) separately for each cohort and we labeled samples as TCBDNA
high if they had

TCBDNA > median(TCBDNA) using the cohort-specific median (with similar analysis for BCBDNA). For analyses of TCBDNA/BCBDNA

and outcomes in the primary cohort, we again excluded the two cell line samples from the Zaretsky cohort (Case2-Baseline and

Case3-Baseline).
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When we compared TCBDNA and TCBRNA, there were a subset of samples in the MGH cohort for which DNA and RNA was ex-

tracted from different locations of a tumor biopsy. These samples could have different levels of TCB in RNA and DNA due to sampling

rather than technical factors, so when we looked at the correlation between TCBDNA and TCBRNA (as well as the correlation between

BCBDNA and BCBDNA), we only included Van Allen samples and MGH samples with DNA and RNA extracted from the same location

(n = 35 total). For analysis of TCBDNA and BCBDNA from longitudinal WES samples, we analyzed samples from the same 54 patients

with longitudinal WES samples as in the PhylogicNDT longitudinal analysis, and for patients in the MGH cohort with three or more

biopsies, we used the earliest two WES samples available from each patient. Additionally, for analysis of TCBRNA and BCBRNA

from longitudinal RNA-Seq, we analyzed 172 paired biopsies from 86 patients across the Riaz, Gide and MGH cohorts, and again

for patients in the MGH cohort with three or more biopsies, we used the earliest two RNA-Seq samples available from each patient.

TCR/Ig overlap analysis
In order to further establish that TCRs and Igs were shared between WES and RNA-Seq data, we assessed the degree of overlap

between TCR and Ig sequences in primary cohort samples with DNA and RNA extracted from the same location (n = 35 total). Using

each DNA CDR3 region from the MixCR output, we performed pairwise global alignments using the Needleman-Wunsch algorithm

(implemented in the R biostrings package in function pairwiseAlignment with gapOpening=10 and gapExtension=4) between the

DNA CDR3 region and all RNA CDR3 regions in the MixCR output from the paired RNA sample. If the top alignment had a Needle-

man-Wunsch alignment score greater than 25 and the top alignment had Si = number of mismatches+total insertion length+total

deletion length % 2, then we counted the TCR or Ig pair as an overlap. We then calculated the number of patients with DNA/RNA

overlaps for TCRs and for Igs.

B cell scRNA signature analysis
To assess the correlation between BCBRNA and B cell types in the primary cohort RNA-Seq data, we assessed scRNA-derived naive

B cell and plasma B cell signatures. We used published cell-type marker genes for naive B cells and plasma B cells43. To calculate

signature scores, we z-scored the log2(TPM+1) values formarker genes that overlappedwith the genes in the batch-effects corrected

TPM data from the primary cohort, and we then took the mean. We then assessed the correlation between the naive B cell signature

or the plasma B cell signature and BCBRNA for the primary cohort samples.

CIBERSORTx deconvolution analysis
To assess the cell type composition of the bulk RNA-Seq samples in the primary cohort, we performed a deconvolution analysis using

CIBERSORTx42. In order to deconvolute melanoma cell types accurately, we used published melanoma scRNA-Seq data from the

Tirosh cohort, available on the CIBERSORTxweb portal (https://cibersortx.stanford.edu)51. This scRNA reference data included both

tumor and normal cell types. We ran CIBERSORTx using B-mode batch correction in absolute mode with 100 iterations. In order to

obtain cell type fractions, we divided each sample’s cell type score by the sum of scores for the sample. For analysis of T cell frac-

tions, we summed CD4 and CD8 T cell fractions. To assess the cell type fractions of different cell types we aggregated stromal cells

(Endothelial cells and Cancer Associated Fibroblasts [CAFs]) and immune cells (CD8 T cells, CD4 T cells, NK cells, Macrophages and

B cells) separately. Finally, we tested the correlation between the fraction of malignant cells in RNA fromCIBERSORTx and the tumor

purity in DNA from ABSOLUTE for the 35 primary cohort samples with DNA and RNA extracted from the same location.

RNA-seq tumor subtyping
In order to identify melanoma subtypes using bulk RNA-Seq data, we applied a Bayesian NMF based clusteringmethod to 469 TGCA

melanoma RNA-Seq samples39,47,48. We preprocessed the data by removing non-protein-coding genes and by retaining only the

25% of genes with the highest standard deviation of expression across samples, and we removed all genes that were expressed

at 0 TPM in at least 10% of samples. After these steps, 2684 genes remained. Next, we transformed the matrix of TPMs into fold

changes by subtracting the median of each gene from the log2(TPM+1) values for that gene. To cluster samples, we created a dis-

tance matrix by calculating the Spearman correlation between each pair of samples and then performed repeated hierarchical clus-

tering with K (the number of clusters) between 2 and 10. We performed hierarchical clustering using 80% sampling and average

linkage, and we repeated this clustering 500*K times for each K. We created a consensus matrix MK by calculating the number of

times that each pair of samples clustered together in the repeated hierarchical clusterings for a given K. Then, we summed all MK

and normalized the final matrix M* by the total number of iterations. We then used Bayesian non-negative matrix factorization

with a half-normal prior on the M* matrix to determine the optimal number of clusters K*. In this setup where we are approximating

M*� HTH, the Hmatrix represents the association of samples to clusters. The most frequent solution was K* = 5, so we selected this

clustering solution. We also obtained the normalized matrix H* by normalizing each column so that the values of each sample’s hij
sample-to-cluster association sum to 1.

To identify marker genes for clusters, we took the full TCGA SKCM log2(TPM+1) matrix X with 19820 protein-coding genes and

performed non-negative matrix factorization by approximating X � WH*. In this case, the values in W represent the association of

a gene to each cluster. We obtained the normalized matrix W* by again normalizing each column to sum to 1.

We used a previously developed approach in order to select marker genes for each subtype and project the subtypes identified in

TCGA samples to new data using the expression of the reduced set of marker genes47. In order to optimize the subtype classifier, we
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varied parameters for selecting cluster marker genes for the subtype classification. We did not consider genes with 0 TPM in 10% or

more samples as candidate marker genes. When selectingmarker genes, we used only marker genes which were overexpressed in a

cluster relative to the other clusters.We selectedmarker geneswhich had normalized association to a cluster greater than a threshold

parameterWcut andwe limited the number ofmarker genes for each cluster based on the threshold parameter genecut. For themarker

genes in each cluster, we considered only genes with a mean difference in log2(fold change) across clusters of 0.5 or better. In order

to identify the optimal classifier, we performed a parameter sweep with Wcut from 0.1 to 0.96 in increments of 0.01 and genecut from

30 to 250 in increments of 10. Using these parameters, we selected the reduced set of marker genes g, and then we performed the

matrix factorization Xg�W*gH, and we assigned samples to clusters using this H matrix. We measured the performance of the clas-

sifier using the adjusted rand index when comparing the projected cluster labels to the original cluster labels. We identified Wcut =

0.71 and genecut = 65 as the optimal parameter setting, which resulted in an adjusted rand index of 0.653 for the TCGA SKCM

samples.

We then used the marker genes and the subtype membership for TCGA samples to compare our melanoma subtypes to previous

melanoma subtype classification schemes. The TCGAmelanoma RNA-Seq subtyping identified 3 subtypes: an immune subtype, an

MITF high subtype and a keratin subtype. The TCGA MITF low and Immune subtypes had strong overlap with two of our subtypes

(Figure S10B), and themarker genes were consistent withmany T cell genes identified asmarkers for one (CD2 andCD8A) and neural

crest marker genes (such as AXL and NGFR) highly expressed in the other (Figures S10E and S10F). Based on these results, we de-

noted these subtypes Immune and MITF low. Another subtype had many keratin marker genes such as (KRT10, KRT5 and KRT19),

suggesting a high degree of keratinocyte infiltration, so we denoted this subtype Keratin high. Next, when we compared our subtype

assignments to a melanoma differentiation-based subtype classification scheme, we saw a high degree of overlap between some

subtypes (Figure S10D).49 The analysis in the Tsoi paper attempted to remove non-tumor intrinsic signals including immune infiltra-

tion and keratin expression, whereas our goal was to incorporate both tumor-intrinsic markers and potential immune markers. The

Tsoi melanocytic subtype strongly overlapped with one of our subtypes, and this subtype had the highest expression of melanocyte

markers such as PMEL,MITF andMLANA, so we denoted this subtype MITF high. The MITF high and MITF low subtypes match the

previously recognized melanoma differentiation axis with well differentiated melanocyte-like tumors expressing MITF and poorly

differentiated neural-crest-like tumors expressing AXL49–51. The final subtype had the highest degree of overlap with the Tsoi tran-

sitory subtype (Figure S10D) which had an intermediate differentiation state, so we denoted this the Intermediate subtype (though the

MITF expression level in this subtype is similar to that of the MITF high subtype). Additionally, we looked at the relationships between

TMB (by reprocessing TCGA melanoma WES data using the same somatic mutation calling pipeline), TCBRNA, BCBRNA and tumor

purity (from the previous TCGA melanoma analysis)39.

Finally, we sought to classify the tumors in the melanoma immunotherapy meta-analysis cohort by their subtype. We used the

ComBat batch corrected log2(TPM+1) values for the 154 primary cohort RNA-Seq samples and preprocessed the data by removing

genes with zero TPM values in 10% or more samples and transforming the TPM values to log2(fold change) values using median

centering. This preprocessing removed a subset of the marker genes which were selected in the subtype classifier. Then, we

used the weights inferred for thematrix W*g and the log2(fold change) values for the selected genes in the immunotherapy expression

data to perform the approximation Xg CPB�W*gHCPB fromwhich we could identify the subtypes of the immunotherapy samples using

the normalized matrix H*CPB. We separately applied this same procedure to the ComBat batch corrected log2(TPM+1) values for the

180 secondary cohort samples in order to determine their subtype memberships.

Differential expression analysis
We used DESeq284 in order to identify differentially expressed genes from the primary cohort RNA-Seq data. Based on the previous

batch effects that we identified between cohorts, we used the cohort as an additional covariate in all DESeq2-based differential

expression analyses. We compared patients with long OS (overall survival > 1 year) versus short OS (overall survival < 1 year) and

responders versus non-responders in 154 samples in the primary cohort (153 for overall survival as one patient did not have OS

data), while including batch as a covariate. We analyzed genes with median log2(TPM+1) > 1 and we performed Benjamini-Hochberg

multiple hypothesis correction using the DESeq2 P values. We considered genes with q < 0.05 as differentially expressed.

Analysis of CCLE and human protein atlas (RNA-seq data
To assess whether the differentially expressed genes were expressed in melanoma cells, immune cells or both cell types, we as-

sessed gene expression in CCLE cell lines and bulk RNA-Seq data of HPA blood cell types58,64. We downloaded CCLE RNA-Seq

TPM data from https://data.broadinstitute.org/ccle/CCLE_RNAseq_rsem_genes_tpm_20180929.txt.gz and used data from 49 mel-

anoma cell lines. When we performed PCA on the log2(TPM+1) values, we noted 2 outliers in PCA (CJM_SKIN and LOXIMVI_SKIN),

and we removed these two cell lines from the dataset, leaving 47 melanoma cell lines. Then, we computed the median log2(TPM+1)

values for the differentially expressed genes of interest. To quantify expression of genes in immune cells, we downloaded the HPA

blood expression data from https://www.proteinatlas.org/download/rna_blood_cell_sample_tpm_m.tsv.zip and took the median

log2(TPM+1). We used thresholds of log2(TPM+1) of 1 for both cohorts to determine whether genes were expressed in immune cells,

expressed in tumor cells, expressed in both or had low expression in both.

Additionally, we wanted to determine which immune cell types and which melanoma subtypes had high expression of these differ-

entially expressed genes of interest. First, we assessed which of the differentially expressed genes were coexpressed by calculating
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the pairwise spearman correlations of all genes in the 154 primary cohort samples (Figures S12D and S20A). Then, for the differen-

tially expressed genes that were higher expressed in responders or patients with long OS (which were usually higher expressed in

immune cells than inmelanoma cell lines), we transformed the HPA log2(TPM+1) values to z-scores and took themean of each gene’s

z-scores for each cell type (Figures S12E and S13B). Additionally, for each of these genes, we ranked the 19 HPA cell types by

log2(TPM+1) of the gene, with 1 being the highest expression and 19 being the lowest expression, allowing for ties. We then ordered

each cell type by their median rank across the genes of interest (Figures S12F and S13C). Finally, using the primary cohort batch

corrected log2(TPM+1) data and melanoma subtypes, we repeated the same analysis of mean z-scored expression by subtype

and subtype ranking (Figures S12G, S12H, S13D, and S12E). These analyses suggested that lymphocytes had the highest expres-

sion of the genes overexpressed in responders and patients with long OS, and that the genes overexpressed in non-responder and

patients with short OS were highest expressed in the MITF low melanoma subtype.

Construction of metagene models
To create gene signatures using the differentially expressed genes from the primary cohort, we constructed metagenes from the

differentially expressed genes in the long OS versus short OS and the responder versus non-responder analyses. For each analysis,

we split genes based on their effect size, consisting of 75 genes overexpressed in responders, 55 genes overexpressed in patients

with long OS, 26 genes overexpressed in non-responders and 28 genes overexpressed in patients with short OS.We created ameta-

gene using each of these four gene lists. In order to score individual patients, we transformed log2(TPM+1) values to z-scores for each

gene across patients (so that genes with low expression would not be penalized) and calculated the mean of the gene z-scores for

each individual patient.

Predicting survival and response using gene pair models
To create simple models to predict outcome using gene expression that could potentially incorporate both tumor and immune com-

ponents, we considered the genes we identified as differentially expressed and tested all gene pairs as predictors of response and

overall survival. For this analysis, we used the batch-effects corrected log2(TPM+1) values for primary cohort samples, whereas in the

DESeq2 differential expression analysis we used the raw count data and included batch as a DESeq2model covariate. For analysis of

response, we used all 154 patients, but for analysis of survival, we analyzed 153 samples because one patient from the Hugo cohort

did not have overall survival data. We performed the gene pair model analysis using 1) all 3403 unique pairs of the 83 genes differ-

entially expressed between patients with long OS and short OS 2) all 5050 unique pairs of the 101 genes differentially expressed be-

tween responders and non-responders. For each analysis, we also considered the corresponding pair of metagenes as an additional

model (for 1) the long OS and short OS metagenes and for 2) the R and NRmetagenes). For each gene (or metagene) pair model, we

tested the association with survival using Cox proportional hazards models incorporating two genes, and we calculated the signif-

icance with the log-rank P value and the performance with the C-index. Similarly, we tested the association between gene pairs and

response using a logistic regression model incorporating two genes, and we calculated the significance with a P value testing

whether the null hypothesis of an AUC = 0.5 can be rejected (implemented in the R verification package100) and the model perfor-

mance with the model AUC (using the logistic regression ŷ values to rank samples).

Next, we performed multiple hypothesis corrections on the model significance values separately for logistic regression model P

values and for Cox model P values. Since the tested gene pairs were genes associated with outcomes in the DESeq2 analysis,

many of the gene pair models had low P values, and the distribution of gene pair model P values strongly deviated from a uniform

distribution. Additionally, we wanted to very stringently select significant models, so we used a Bonferroni multiple hypothesis

correction rather than a Benjamini-Hochberg correction. We performed Bonferroni correction on the P values for the response logis-

tic regression models and the survival Cox models.

To identify gene pair models which predicted both response and survival, we selected gene models with Bonferroni corrected p <

0.05 for both response and survival predictions in the primary cohort. For the analysis using the 5050 gene pairs derived from the

responder versus non-responder differential expression analysis and the response metagene pair model, 39 gene pair models

had Bonferroni corrected p < 0.05 for prediction of response (one of which was the response metagene pair model), but 0 gene

pair models had Bonferroni corrected p < 0.05 for predictions of survival. Thus, the gene pairs derived from the responder versus

non-responder differential expression analysis were predictors of response but not survival. Additionally, when we looked at the per-

formance of the gene pair models by the original differential expression effect size (R genes had higher expression in responders, and

NR genes had higher expression in non-responders), gene pairs models with a R gene and an NR gene had higher C-index values

than other model types but gene pair models with two NR genes had higher AUC values than other model types. For the analysis

using the 3403 gene pairs derived from the long OS versus short OS differential expression analysis and the long/short OSmetagene

pair model, 67 gene pair models had Bonferroni corrected p < 0.05 for prediction of survival and 10models had Bonferroni corrected

p < 0.05 for predictions of response. There were 3 gene pair models that had Bonferroni-corrected p < 0.05 for both predictions of

response and survival in the primary cohort:MAP4K1&TBX3,MAP4K1&AGER and the long OS/short OS metagene pair model (Fig-

ure 4A). These results suggest that some gene pairs derived from the long OS versus short OS differential expression analysis were

able to predict both survival and response. Furthermore, gene pairs models with a long OS gene (higher expressed in patients with

long OS) and a short OS gene (higher expressed in patients with short OS) had higher C-index values than other model types, but the

gene pairs models with two short OS genes had very slightly higher AUC values than gene pair models with a long OS gene and a
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short OS gene, though the mean AUC values were very similar (mean AUC for models with a long OS gene and a short OS gene was

0.612 and mean AUC for models with two short OS genes was 0.619, Wilcoxon p = 0.026, Figures S13I and S13J). Additionally, the 3

gene pairs which passed Bonferroni-corrected P value thresholds for survival and response predictions were all pairs which incor-

porated a long OS gene and a short OS gene. These results suggest that gene model pairs which incorporate a long OS gene or an R

gene (often immune-expressed genes) as well as a short OS gene or an NR gene (often tumor-expressed genes) have improved pre-

dictions of survival than other gene pair model types, but gene pair models with two poor outcome-associated genes can sometimes

perform best in response prediction.

Finally, to determine whether tumor mutational burden improved the three gene pair models, we performed a combined DNA and

RNA analysis. We considered the patients from the primary cohort with both WES data and RNA-Seq data, and we included patients

for which the DNA and RNAwere not taken from the same location (n = 59 total). We considered three componentmodels with a gene

pair plus log10(TMB), and we predicted overall survival using Cox models and response using logistic regression models. To deter-

mine whether TMB improved upon the gene pair models, we used likelihood ratio tests comparing Coxmodels using only a gene pair

to Cox models with a gene pair and log10(TMB) for overall survival, and we used DeLong’s test to compare AUCs of response logistic

regression models using only a gene pair to logistic regression models with a gene pair and log10(TMB) for response (Figures S14A–

S14D). Based on the performance of the gene pair models, we decided to compare the performance of these three gene pair models

to that of other expression-based immunotherapy models and assess their performance in an independent dataset.

Gene pair model cross-validation analysis
To assess the robustness of the gene pair model discovery, we performed a cross-validation analysis using the primary cohort data.

We used different splits for training and validation sets of 80%/20%, 75%/25%, 70%/30%, 66%/33% and 50%/50%. Using training

sets composed of subsets of the cohort, we repeated the differential expression analysis of responders versus non-responders and

long OS versus short OS (DESeq2 q < 0.05). We tested the association between all differentially expressed gene pairs (within gene

pair type, response or OS) and response and survival using logistic regression and Cox models as described. In addition to the gene

pair models, we also constructed responder/non-responder and long OS/short OS metagene pair models using the differentially ex-

pressed genes discovered in each training set cross-validation differential expression analysis. Due to the reduced power in the

training sets, there were sometimes few differentially expressed genes detected in the training sets, so we also constructed meta-

gene pair models by ranking differentially expressed gene by P values and creating a metagene using the top 25 genes overex-

pressed in responders or patients with long OS and a separate metagene using the top 25 genes overexpressed in non-responders

or patients with short OS (even if these genes had DESeq2 q > 0.05). Then, for each training set we performed the discovery analysis

of gene pair models using each set of differentially expressed genes by identifying gene pairs with Bonferroni-corrected log-rank p <

0.05 and/or Bonferroni-corrected response AUC p < 0.05. Finally, we attempted to validate the discovered models in a validation set

composed of all of the remaining samples in the cohort, checking for validation set Bonferroni-corrected log-rank p < 0.05 and Bon-

ferroni-corrected response AUC p < 0.05.

Based on the results from this cross validation, we found that increasing the training set size increased the number of models

discovered with Bonferroni-corrected p < 0.05 (Figures S15A and S15B). Even with 80% of the dataset as a training set, discovery

was still increasing, which suggests that the full cohort analysis is likely underpowered. For the metagene models, increasing the

training set size increased the robustness of the long OS metagene signatures, whereas the short OS metagene signatures were

more variable across patients (Figures S15C–S15F). Finally, while the top gene pair models were frequently discovered training

data subsets (Figures S15G and S15H), they were very rarely statistically significant in validation sets (Figures S15I and S15J), sup-

porting the need for larger clinically annotated immunotherapy datasets.

Gene pair model validation analysis
We attempted to validate the three gene pair models (MAP4K1&TBX3, MAP4K1&AGER and the long OS/short OS metagene pair

model) developed using the primary cohort samples in the independent secondary cohort. To be validated, we required thesemodels

to achieve significance below the Bonferroni corrected threshold of p = 0.05/3 = 0.0167 with both the OS log-rank P value < 0.0167

and the response AUC P value < 0.0167 in the secondary cohort. Each of the three gene pair models passed both of these thresholds

in the secondary cohort (Figure 4G), so we considered them to be validated in an independent cohort.

In order to visualize the survival of high and low risk groups within the primary and secondary cohorts for the MAP4K1&TBX3

model, we divided patients into groups depending on whether their ŷ values in overall survival Cox models with MAP4K1&TBX3

were above or below median (Figure 4K).

Performance of external gene-expression models
In order to compare the performance of the top gene pair models to that of other predictors of immunotherapy outcomes, we eval-

uated a set of external models in both the primary and secondary cohorts. We also included TCBRNA and BCBRNA as additional pre-

dictors. Additionally, we includedCD274 expression as a simple model. We tested the CYTmodel57 by taking the geometric mean of

PRF1 andGZMB expression. We tested the GEP model35 by taking the mean expression of the GEP signature genes. We tested the

IMPRES model55 by counting the number of IMPRES gene pairs that had the expected relationship (each IMPRES high expression

gene having greater expression than the paired IMPRES low expression gene). We tested the MHC II model7 by performing ssGSEA
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using the MHC II gene list, and we z-scored the ssGESEA score so that hazard ratios would be more interpretable. Finally, we tested

the TIDEmodel56 by calculating TIDE scores using the TIDE web portal (http://tide.dfci.harvard.edu/). The TIDE portal includes sepa-

rate models for melanoma samples from patients that are immunotherapy naive or had prior immunotherapy. Additionally, mean

centering is recommended as a preprocessing step. Thus, we separately mean-centered the batch-effects corrected log2(TPM+1)

data for patients with prior CTLA-4 treatment and patients with no prior CTLA-4 treatment in the primary cohort, uploaded these

matrices to the TIDE web portal and obtained TIDE scores. Separately, for the secondary cohort, we repeated the same process,

and for TIDE we separately processed the patients with prior CTLA-4 in the Liu cohort (using the melanoma model for patients

with prior immunotherapy) and then the combination of the CTLA4 naive patients in the Liu cohort with the Gide cohort (as there

was no information regard prior immunotherapy treatment for the Gide cohort). For testing the associations between these models

and outcome, we used the predictor values as described, but for visualizing the predictor values across patients, we z-scored the

predictor values (Figure 4B; Figure S17A). After validating the three gene pair models, we compared the response classification per-

formance of all pairs of models in the secondary cohort using DeLong’s test.

Finally, in order to further assess the robustness of these gene pair models, we considered a number of patient and treatment sub-

sets. First, we tested models in the secondary cohort including the top gene pairs and treatment (PD-1 versus combined CTLA-

4+PD-1) (Figures S17J and S17K). Additionally, to assess the robustness of models across cohorts, we evaluated the performance

of all gene pair models and the external models within each cohort separately while including treatment (PD-1 versus CTLA-4+PD-1)

as a covariate in the Gide cohort model (Figures S18A–S18K). Next, to determine the robustness of models across treatment groups,

we subset all patients (primary and second cohorts combined) by treatment (CTLA-4, PD-1 or combinedCTLA-4+PD-1). We included

patients in the MGH cohort that were treated with PD-1+KIR combination therapy in the PD-1 patient subset. We combined the

batch-effects corrected RNA-Seq data from the 154 patients in the primary cohort with batch-effects corrected RNA-Seq data

from the 180 patients in the secondary cohort, and we tested the association between eachmodel and overall survival for each treat-

ment group. We also split PD-1 treated patients into PD-1 treated patients with prior CTLA-4 and PD-1 treated patients with no prior

CTLA-47, and we repeated the Cox model analysis of overall survival for each predictive model. As we did not have prior treatment

information for theGide cohort, we did not include the Gide cohort in this analysis of PD-1 treated patients with or without prior CTLA-

4 (Figures S19A–S19K).

TBX3 melanoma cell line GSEA
To identify pathways associated with TBX3 expression in melanoma, we again analyzed RNA-Seq from the 47 CCLE melanoma cell

lines and ranked genes by their correlation with TBX3. Then, we performed ranked gene set enrichment analysis using the fgsea R

package101 with all GO terms (Figure S20A). Negatively correlated genes were enriched for pigmentation pathways, which is consis-

tent with TBX3 being expressed in poorly differentiated neural crest-likemelanomas but not well differentiatedMITF highmelanomas.

Analysis of Jerby-Arnon melanoma scRNA data
To assesswhether genes of interest were expressed inmelanoma cells ormelanoma tumor-infiltrating immune cells, we downloaded

scRNA data from the Jerby-Arnon cohort59 from https://singlecell.broadinstitute.org/single_cell/study/SCP109/melanoma-

immunotherapy-resistance. We plotted the expression of genes of interest using the TPM values and the pre-computed normal

andmalignant cell tSNE coordinates. To test whether TBX3was higher expressed in NGFR-expressingmelanoma cells (which would

be consistent with TBX3 being higher expressed in poorly differentiated neural-crest-like melanoma cells), we performed Wilcoxon

tests of TBX3 expression in melanoma cells versus immune cells and TBX3 expression in melanoma cells with an NGFR TPM of

0 versus TBX3 expression in melanoma cells with an NGFR TPM > 0 (Figures S20B–S20E).

Analysis of Tsoi cell line data
To assess whether TBX3was expressed in poorly differentiated melanoma cell lines49, we used the Tsoi web portal (https://systems.

crump.ucla.edu/dediff/index.php) and checked the expression ofMITF and AXL, which are known to be expressed in well and poorly

differentiated melanoma cells respectively, as well as TBX3. TBX3 was expressed in poorly and intermediately differentiated mela-

nomas but not in well differentiated melanomas (Figure 4M).
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