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Significance

Our study demonstrates scaling 
of optical pooled screening to the 
genome-wide level. Profile-based 
screening is a uniquely powerful 
phenotype-based genetic tool 
that enables retrospective 
assignment of genetic 
perturbations to multiple 
phenotypic categories. Here, we 
demonstrated the power of 
optical pooled screening to 
support analysis of 80,000 
perturbations from single-cell 
images of about 10 million cells. 
We leverage the results to 
generate insights into innate 
immune responses to viral 
infection including the 
essentiality of ATP13A1 function 
for signaling through RIG-I/
DDX58.
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The infection of mammalian cells by viruses and innate immune responses to infec-
tion are spatiotemporally organized processes. Cytosolic RNA sensors trigger nuclear 
translocation of the transcription factor interferon regulatory factor 3 (IRF3) and 
consequent induction of host immune responses to RNA viruses. Previous genetic 
screens for factors involved in viral sensing did not resolve changes in the subcel-
lular localization of host or viral proteins. Here, we increased the throughput of 
our optical pooled screening technology by over fourfold. This allowed us to carry 
out a genome-wide CRISPR knockout screen using high-resolution multiparameter 
imaging of cellular responses to Sendai virus infection coupled with in situ cDNA 
sequencing by synthesis (SBS) to identify 80,408 single guide RNAs (sgRNAs) in 
10,366,390 cells—over an order of magnitude more genomic perturbations than 
demonstrated previously using an in situ SBS readout. By ranking perturbations using 
human-designed and deep learning image feature scores, we identified regulators of 
IRF3 translocation, Sendai virus localization, and peroxisomal biogenesis. Among 
the hits, we found that ATP13A1, an ER-localized P5A-type ATPase, is essential for 
viral sensing and is required for targeting of mitochondrial antiviral signaling protein 
(MAVS) to mitochondrial membranes where MAVS must be localized for effective 
signaling through retinoic acid-inducible gene I (RIG-I). The ability to carry out 
genome-wide pooled screens with complex high-resolution image-based phenotyping 
dramatically expands the scope of functional genomics approaches.

CRISPR screening | RIG-I | IRF3 | high-content imaging | Sendai

Host cell responses to viral infection are conserved processes critical for defense against 
established and emerging viruses. Intracellular responses to RNA virus infection are medi-
ated by innate immune signaling pathways that begin with binding of viral RNA by the 
pattern recognition receptor (PRR) RIG-I or melanoma differentiation-associated protein 
5 (MDA5). The PRRs in turn trigger phosphorylation and nuclear translocation of the 
transcription factor IRF3, which induces transcription of the interferon antiviral immunity 
program (1). Activating mutations in these PRRs and increased spontaneous IRF3 trans-
location are associated with autoimmune syndromes (2, 3), and activation of PRRs such 
as RIG-I, on the other hand, can boost antitumor responses (4). Given the importance 
of IRF3 translocation, a better understanding of genes that regulate its activation and 
translocation may contribute to design of therapeutics to boost antiviral immunity, 
dampen autoimmunity, or support antitumor immunity.

While a number of genome-wide CRISPR screens for control of virus infection have 
been performed, most have assayed cell fitness (5–12) or viral replication (13, 14) in 
response to cellular infection by a pathogenic virus. More recently, pooled genome-wide 
screens have examined interferon induction in response to interferon treatment (15–17) 
or Sendai virus (SeV) infection (18); however, none have been able to examine IRF3 
translocation directly, a critical step in the sensing pathway, because pooled genetic screens 
are not typically compatible with subcellular imaging assays. While a kinome-wide 
image-based arrayed siRNA screen for IRF3 translocation has been performed (19), 
genome-wide arrayed screens have not become routine due to the high cost and labor 
investment required for cellular imaging in an arrayed format.

We recently developed a method to perform pooled image-based screens by linking 
single-cell image-based phenotypes to perturbation identity in mammalian cell libraries 
(20, 21). Using targeted in situ sequencing, this method demultiplexes entire cell libraries 
containing genetic CRISPR perturbations following phenotyping. In order to scale the 
method to the genome-wide level, we improved the throughput by over fourfold by 
1) using a microscope system with reduced stage movement latency (Nikon Imaging 
Software Elements with a Ti2 microscope rather than Micro-Manager software with a 
Ti-E microscope) and 2) completing tiled image acquisitions for each color channel before 
reconfiguring the microscope for the next color channel in order to eliminate time-intensive D
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optical filter switching at each field of view. The second advance 
degraded raw alignment precision across channels, necessitating 
development of fast and accurate computational image alignment 
across multicentimeter scales (SI Appendix, Fig. S1E). In addition, 
while we previously only assayed two to four phenotyping chan-
nels due to incompatibility of other channels with Illumina’s 
four-color sequencing-by-synthesis reagents (20, 22), here we 
assayed as many as seven phenotyping channels at a time by taking 
advantage of the higher local optical intensity of the in situ 
sequencing signals and applying our higher-throughput data 
acquisition protocol for phenotyping with commercially available 
reagents. Our multiparameter screen identified regulators of IRF3 
translocation, peroxisome biogenesis, and spatial localization of 
SeV, a paramyxovirus known to induce strong interferon responses 
(23), and demonstrates the feasibility of optical pooled screening 
at the genome-wide scale to discover complex, multiparameter 
phenotypes.

Results

A Genome-Wide Optical Pooled Screen Identifies Regulators 
of IRF3 Translocation. We performed a genome-wide optical 
pooled screen using a lentivirus library of 80,408 sgRNAs 
targeting over 20,000 genes, with 454 nontargeting sgRNAs. 
HeLa-TetR-Cas9 cells were stably transduced with BFP-PTS1 
(SI Appendix, Fig. S1 A and B), a peroxisomal marker, and were 
infected at an MOI of 0.05 with the sgRNA library. Following 
7  days of doxycycline Cas9 induction, cells were infected 
with the SeV Cantell strain at an MOI of 10 for 15 hours 
prior to imaging (Fig.  1A). We then performed multiplexed 
immunofluorescence imaging, assessing two organelles critical 
to antiviral signaling—peroxisomes and mitochondria (24)—
the RNA receptors MDA5 and RIG-I, pIRF3, SeV itself, and 
DNA (DAPI) in all cells (Fig. 1C) before performing reverse 
transcription, padlock targeting of cDNA, RCA, and in  situ 
sequencing by synthesis (SBS) to detect sgRNAs as previously 
described (21, 25). We performed 12 cycles of in situ SBS to 
read out all sgRNAs (Fig.  1D). Due to the high intensity of 
the in situ SBS signal relative to immunofluorescence staining, 
we titrated the immunofluorescence reagents that produced 
signal in the phenotyping channels that overlapped with SBS 
spectra to mitigate interference with base calling (Fig. 1B). This 
strategy enabled the acquisition of as many as seven channels 
of phenotyping data without using custom-modified antibodies 
(22), an advancement over the two to four phenotyping channels 
previously demonstrated using optical pooled screening, without 
the need for specialized reagents (20). Images of single cells from 
our genome-wide pooled screen showed robust translocation of 
phosphorylated IRF3 in nontargeting control cells, while RIG-I, 
MAVS, and IRF3 knockouts profoundly impair translocation 
across multiple sgRNAs (Fig.  1 E and F) and were the three 
highest scoring genes in the screen (Fig. 1 G–I and Dataset S1). To 
confirm the results of our primary screen, we performed focused 
secondary pooled screens (using 6 sgRNAs/gene) of 342 genes 
that scored for either increasing or decreasing IRF3 translocation 
in our genome-wide screen using antibody staining or an IRF3 
reporter (Fig. 1G  and Datasets S2 and S3). Secondary screen 
translocation scores were well correlated with translocation scores 
from the primary genome-wide screen (Fig. 1H), underscoring 
the considerable statistical power achieved for IRF3 translocation 
in the primary genome-wide screen. 51 genes were confirmed 
by stringent criteria to score in both of our secondary screens, 
including the known pathway members MAVS, DDX58, 
RNF135, and IRF3 (26), Fig. 1I.

We next examined regulators of IRF3 translocation confirmed 
by secondary screening using STRING analysis (27) and found 
that the majority are predicted interactors (minimum confidence 
0.4, 13/24 of the genes found to decrease translocation, 
P = 8.16e−7, Fig. 2A, and 18/27 genes increase translocation, 
P = 1.11e−16, Fig. 2B). Among genes found to decrease transloca-
tion, we identified a set containing genes known to be involved in 
RIG-I induction of interferon, as well as genes involved in ubiq-
uitin transferase activity, which is intriguing since ubiquitin is 
known to be involved in regulating several pathway members, but 
only FBXW7 has been previously identified to have a direct role 
in this pathway (28). In addition, we identified a cluster of three 
genes associated with sialic acid metabolism (CMAS, SLC35A1, 
and GNE) that decreased IRF3 translocation likely secondary to 
inhibition of SeV entry, as viral load was greatly diminished in 
these knockouts (Fig. 2C), and viral entry is dependent on expres-
sion of sialic acids on the cell surface (29). Positive regulators also 
included many genes not previously associated with IRF3 trans-
location, including ATP13A1, which was one of the top three 
genes that decreased translocation. IKBKG (Nuclear factor kappa 
B essential modulator, NEMO) knockout also decreased IRF3 
translocation and was previously reported to be required for 
MAVS phosphorylation, which in turn induces IRF3 activation 
(30). Among putative negative regulators nominated by the screen 
was the Ragulator complex (LAMTOR2,3,5 and associated genes 
FLCN and RRAGC), which is required for mTOR activation (31) 
and whose activity was found to increase SeV load (Fig. 2C). An 
mTOR inhibitor, rapamycin, has been shown to increase SeV load 
in infected cells (32), but the Ragulator complex has not been 
previously associated with a role in SeV infection or IRF3 activa-
tion. Other significant complexes that negatively regulated IRF3 
translocation include Mediator-associated genes (MED13, 
MED16, MED24, CCNC, and BTAF1), STAGA complex mem-
bers (TADA2B, TAF5L, and TAF6L), and components of the 
HOPS complex (VPS11, VPS16, and VPS39), which mediates 
endolysosomal fusion, a process that likely reduces SeV replication 
as it is inhibited in infected cells (33). Next, we also performed a 
focused optical pooled screen with the same set of genes upon 
vesicular stomatitis virus (VSV) infection, in order to determine 
the effect of each perturbation on IRF3 translocation upon infec-
tion with an orthogonal RNA virus, as VSV belongs to a different 
virus family (Fig. 2 E and F). Notably, despite reduced effect sizes 
in the VSV screen, ATP13A1 and ATP2B1 decreased IRF3 trans-
location upon knockout in both settings.

Deep Learning and High-Dimensional Screen Analysis Reveals 
Gene Functions. In addition to extraction of targeted features 
such as translocation and intensity from single-cell images, we 
also input cropped images of individual cells separately for each 
channel into deep convolutional neural networks (CNNs) to 
enable unbiased identification of additional features. We extracted 
features from a CNN pretrained on ImageNet (35) and separately 
trained an autoencoder on our dataset (Fig. 3A and SI Appendix, 
Fig.  2 A  and  B). Interestingly, we found that both the features 
extracted from the pretrained network as well as features defined in 
the autoencoder’s latent representation space identified confirmed 
hits from the secondary screens with substantially higher accuracy 
than translocation alone (Fig.  3B, ROC AUC improves from 
0.71 to as high as 0.93; both CNNs were naive to the secondary 
screening data). We therefore selected 14 genes predicted to 
decrease translocation upon knockout by combined autoencoder 
and transfer learning features that had not scored highly enough to 
be included in our secondary screens. We found that 8/14 of these 
genes did indeed decrease translocation via arrayed testing (Fig. 3C), D
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Fig. 1. A genome-wide optical pooled screen reveals regulators of pIRF3 translocation. (A) Genome-wide screening workflow. (B) Bright in situ signals enable 
imaging of phenotyping fluorescence signals that overlap with in situ SBS fluorescence signals. (C) Example images for each of the six immunofluorescence 
channels imaged in the genome-wide screen (DAPI was additionally imaged). (Scale bar, 20 μm.) (D) First six in situ sequencing cycles (of 12 total cycles) for the 
same group of cells shown in C. (E) Single-cell images from genome-wide screen show a decrease in IRF3 translocation in positive control genes. (F) Histograms 
of z-scored IRF3 translocation for positive control genes. Individual traces correspond to unique sgRNAs. (G) Hits from the genome-wide screen were assessed 
using a distinct library of 342 genes with six sgRNAs/gene in two secondary screens with different IRF3 detection assays. (H) Secondary translocation screens are 
well correlated with the primary screen for both antibody staining (r = 0.65, P = 2.6e−42) and reporter (r = 0.50, P = 5.22e−23). Blue dots indicate significant hits 
with decreased IRF3 translocation upon knockout, while red dots indicate genes with increased IRF3 translocation. (I) Volcano plot of secondary screen results 
for antibody staining with hits confirmed via secondary screening marked in blue or red. Two-sided P values were calculated as described in the Materials and 
Methods, corrected using the Benjamini–Hochberg procedure, and aggregated on the gene level using Fisher’s method.
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confirming the hypothesized increased predictiveness of machine 
learning features even for a defined translocation phenotype.

In addition to IRF3 translocation, we also extracted peroxisome 
(Fig. 3D) and SeV (Fig. 3G) intensity features (Dataset S4) from 
our genome-wide single-cell resolution screen dataset. Our screen 
also detected genes affecting peroxisomal biogenesis (PEX13, 
PEX2, PEX14, PEX1, PEX12, PEX10, PEX6, PEX5, PEX26, 
PEX11B, and PEX3) as decreasing peroxisome intensity, while 
known peroxisomal fission genes (DNM1L and MFF) increased 

peroxisomal intensity as expected. Genes showing a decrease in 
peroxisome intensity selected using peroxisome intensity (tar-
geted), transfer learning, and autoencoder features, all were signif-
icantly enriched for the peroxisome GO term (Fig. 3E), while 
genes showing increased peroxisome intensity selected using auto-
encoder features but not targeted or transfer learning features were 
significantly enriched for the GO term heme biosynthesis, which 
has been linked to peroxisome biogenesis through PGC-1α in 
some studies (36), demonstrating the overlapping but also distinct 
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Fig. 2. Analysis of combined hits from secondary screens (A). STRING clusters for hits showing decreased translocation using MCL inflation parameter 3 for 
clustering. Novel genes are in gray, and hits that did not cluster with other hits are listed by the black cluster marker. Table: Top significant GO/Reactome terms 
associated with each cluster among putative positive regulators. P values in A and B are computed via Enrichr (34) using the Fisher exact test and adjusted using 
the Benjamini–Hochberg procedure. (B) STRING clusters as described in (A) for combined hits that increased IRF3 translocation. Table contains top significant GO/
Reactome terms associated with each cluster among putative negative regulators. (C) IRF3 translocation score plotted against SeV intensity scores for all genes 
in the antibody staining secondary screen. Black dots indicate nontargeting controls. (D) Example single-cell images for nontargeting control cells and the top 
gene for increased SeV or decreased SeV burden. For each gene/control, pIRF3 staining appears in green in the top row and SeV staining in cyan in the bottom 
row; each overlaid with DAPI nuclear staining. (E) Workflow for secondary screening to assess IRF3 reporter translocation differences upon either Sendai or VSV 
infection. (F) Comparison of per-gene translocation effects between VSV and Sendai virus infections; significance indicates genes with an FDR-adjusted P value <0.01.
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Fig.  3. Deep learning and multidimensional analysis reveal regulators of IRF3, peroxisomes, and SeV. (A) Schematic showing extraction of features from 
representative single-cell crops where each channel is processed by either a pretrained neural network (Xception) or an autoencoder that yielded the example 
reconstructions shown on the right. (B) Both transfer learning and the autoencoder, as well as combined features, improved prediction of true IRF3 translocation 
hits based on secondary screen results compared to translocation alone using random forest models. (C) Eight of fourteen genes predicted to decrease 
translocation by combined deep learning features showed significantly decreased translocation in arrayed testing with two sgRNAs. *Adjusted P < 0.05, **P < 0.01, 
***P < 0.001, and ****P < 0.0001. Two-sided P values for C and F were calculated by computing the delta AUC for the feature of interest between cells in each well 
and nontargeting control cells (minimum n = 3,000); delta AUCs for all wells containing cells with an sgRNA of interest were then compared to nontargeting delta 
AUCs using a t test; P values were combined using Fisher’s method and corrected using the Benjamini–Hochberg procedure. (D) Mean peroxisome intensity delta 
AUC plotted against FDR-adjusted P values for genome-wide screen. Two-sided P values were calculated as described in the Materials and Methods and corrected 
using the Benjamini–Hochberg procedure. (E) Genes with reduced peroxisome intensity for targeted, transfer, autoencoder, or all three (13 genes in the Venn 
diagram in SI AppendixFig. S2C) features showed significant enrichment of GO:0005777 (Peroxisome), while genes showing increased peroxisome intensity based 
on autoencoder features, unlike targeted features, were enriched for GO:0006783 (heme biosynthesis). Enrichr P values for E and H are computed using the 
Fisher exact test and adjusted using the Benjamini–Hochberg procedure. (F) Three genes with predicted reduction in peroxisome intensity using two sgRNAs per 
gene showed decreased peroxisome intensity in arrayed testing. (Scale bar, 20 μm.) *Adjusted P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. (G) Mean 
SeV intensity delta AUC plotted against FDR-adjusted P values for genome-wide screen. Two-sided P values were calculated as described in the Materials and 
Methods and corrected using the Benjamini–Hochberg procedure. (H) PHATE plot of genes derived from transfer learned features from the SeV channel with the 
top 30 genes that reduced SeV intensity marked in orange (nontargeting controls marked in black). (I) Same as (H) with the top 30 transfer learned perturbations 
most distant from nontargeting controls (black points) marked in purple. (J) Genes with reduced SeV intensity using targeted and autoencoder features were 
enriched for R-HSA-446203 (glycosylation) and R-HSA-4085001 (sialic acid metabolism), while genes showing reduced intensity in transfer learning showed 
stronger enrichment of features related to RNA processing (R-HSA-72203, pre-mRNA processing, and R-HSA-72163, mRNA splicing). (K) Images of single cells 
that scored in the 99th (Bottom) or first (Top) percentile for the SeV transfer learning feature that most differentiated cells with perturbations shown in purple 
in panel I from nontargeting control cells. (L) PHATE plot of genes in secondary screen clustered using Leiden clustering on autoencoder features from the IRF3 
and RIG-I channels, with select genes that decreased IRF3 translocation upon knockout marked with blue text and genes that increased translocation marked in 
red text; cluster membership is denoted by marker color. (M) Same as L but using autoencoder features from the Sendai virus channel. (N) Same as L but using 
autoencoder features from the nuclei/DAPI channel. (O) Same as I but using autoencoder features from the peroxisome channel.D
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contributions of these three methods of feature extraction. We 
selected three genes that showed reduced peroxisome intensity 
using all three feature sets and confirmed via arrayed validation 
that, even in the absence of SeV, peroxisome intensity was indeed 
decreased in these genes (Fig. 3F).

We next examined genes that showed changes in SeV intensity 
in our screen (Fig. 3G). In addition, we analyzed transfer learning 
and autoencoder features extracted from the Sendai virus channel 
to identify perturbations that significantly altered Sendai virus sub-
cellular localization. Interestingly, when we performed dimension-
ality reduction using PHATE (37) on the transfer learned features 
from the Sendai virus channel, we found that the top 30 genes with 
decreased Sendai virus intensity (marked in orange in Fig. 3H) did 
not cluster closely together, indicating that the transfer learned fea-
tures were capturing significant changes in the Sendai virus images 
other than changes in our intensity metric. We therefore analyzed 
the top 30 genes most different from nontargeting controls in the 
transfer learned features (Fig. 3I). Enrichment analysis of this set 
showed that genes related to intracellular trafficking (38, 39) scored 
highly for increased SeV burden (VPS11, RAB14, and TMED10), 
while genes involved in glycosylation and sialic acid metabolism 
(SLC35A1, GNE, and CMAS) were highly ranked for a reduction 
in SeV intensity using targeted and autoencoder features (Fig. 3J). 
On the other hand, the transfer learning features preferentially iden-
tified genes involved in mRNA processing (SART1, NUP155—
already shown to interact with Sendai’s M protein (40), 
DHX9—shown to facilitate HIV, HCV, and FMDV replication 
but not previously associated with SeV (41), and PRPF31), and 
single-cell images of cells enriched in transfer learning showed dif-
fuse cytoplasmic Sendai antibody staining (Fig. 3 J and K), likely 
indicating that RNA processing genes required for the formation 
of cytoplasmic replication foci were not functioning effectively.

We next used features extracted from our autoencoder to cluster 
genes from our secondary screen. When we clustered genes using 
features from the IRF3 and RIG-I channels (Fig. 3L), we found 
that strong positive regulators we had identified (blue text) and 
negative regulators (red text) clustered apart from nontargeting 
controls (black); cluster membership indicated by marker colors. 
When we clustered using features derived from the Sendai virus 
channel, on the other hand, we found that some of the positive 
regulators (e.g., MAVS, DDX58, and ATP13A1) did not cause 
changes in the Sendai channel relative to nontargeting controls 
(Fig. 3M), while other genes known to be involved in sialic acid 
biosynthesis and the major negative regulators did alter Sendai 
virus localization. Interestingly, positive regulators FBXO11 and 
FBXW7 clustered differently from nontargeting controls in Sendai 
virus features as well as features from the nuclear and peroxisome 
channels (Fig. 3 N and O), indicating that apart from their effect 
on IRF3 translocation, they induce significant cellular perturba-
tions. Notably, genes known to be involved in nuclear organization 
(LMNB1) or peroxisome-related metabolic processes (SUCLG1) 
clustered apart from nontargeting controls in only the nuclear or 
peroxisomal features, respectively.

Arrayed Validation and Transcriptional Analysis of IRF3 Translocation 
Hits. Following confirmation via secondary screening, we selected seven 
genes that either decreased (ATP13A1, CAPN15, and ATP2B1) or in-
creased (MAU2, MED16, MED24, and TADA2B) IRF3 translocation 
when knocked out and confirmed the expected effects on IRF3 trans-
location via arrayed knockout with two sgRNAs (Fig. 4A, knockout 
efficiency validated in SI Appendix, Fig. S3, supporting translocation 
images in SI Appendix, Fig. S4A). We also assayed RIG-I activation 
(using an antibody against the activated form) and confirmed that 5/7 
genes showed differences in RIG-I that paralleled the IRF3 translocation 

defect (Fig. 4B). Interestingly, ATP2B1 showed a reduction in IRF3 
translocation but an increase in RIG-I activation, indicating that it may 
regulate a pathway step between RIG-I and IRF3. Next, we assayed 
the effect of these knockouts in the U937 cell line, a cell model of 
monocytes, which are critical for the innate immune response. While 
none of the putative negative regulators significantly altered transloca-
tion in U937 cells, all three putative positive regulators reproduced a 
loss of translocation in these cells (Fig. 4C and SI Appendix, Fig. S4B). 
Interestingly, the putative negative regulators are all known to modulate 
transcription, which may be more covariable with changes in the cellular 
context or the infection time point selected, as we were only able to 
observe infected U937 cells for a shorter period (7 h) than HeLa cells 
(15 h) due to high levels of cell death observed at later time points. We 
next quantified the levels of the active form of RIG-I in HeLa cells in 
response to a transfected synthetic hairpin RNA (hpRNA) stimulation 
in order to determine whether altered responses in the context of Sendai 
infection were secondary to modulation of the infection or, alterna-
tively, were directly regulating antiviral sensing as would be predicted 
if defects were conserved in response to hpRNA treatment. We again 
found that responses to knockout of negative regulators were less well 
conserved, perhaps due to their smaller effect on overall IRF3 transloca-
tion (Fig. 4A), and saw no alteration in active RIG-I in these knockouts. 
However, the two strongest less well-characterized positive regulators, 
ATP13A1 and CAPN15, reproduced the defect in RIG-I activation in 
response to hpRNA stimulation (Fig. 4D).

We then performed RNA sequencing of five less well-characterized 
IRF3 regulators to identify transcriptional effects of these genetic 
knockouts in an unbiased manner. We found that knockouts of all 
five regulators had significantly decreased (ATP13A1 and CAPN15) 
or increased (MED16, MED24, and TADA2B) interferon-stimulated 
gene (ISG) expression in response to both SeV stimulation at two 
time points and hpRNA stimulation, in line with their previous 
observed effects on IRF3 translocation (Fig. 4E). In addition, none 
of the genes showed significant differences in SeV RNA levels rel-
ative to nontargeting controls (SI Appendix, Fig. S4C). Interestingly, 
a subset of ISGs was up-regulated in ATP13A1 and CAPN15 knock-
out cells at later infection time points (Fig. 4F). We performed gene 
set enrichment analysis (GSEA) to further investigate altered path-
ways in negative regulators of translocation and found that all three 
had increased serine-type endopeptidase activity (GO:004252), 
while TADA2B also had increased NOD-like receptor signaling, 
and both Mediator members had increased lysosomal lumen com-
ponent RNA expression (Fig. 4G). To further examine positive 
regulators, we performed gene ontology analysis on genes signifi-
cantly decreased upon knockout of each regulator relative to both 
DDX58 and MAVS in the presence of SeV. We found that CAPN15 
had significantly decreased expression of nucleolar RNAs and nucle-
olus components, while among genes with decreased expression in 
the ATP13A1 knockout, transcripts encoding mitochondrial com-
ponents were significantly perturbed (Fig. 4H). Finally, we also show 
that active RIG-I protein is significantly reduced in the absence of 
ATP13A1 and CAPN15 upon influenza A virus (IAV) infection 
and for ATP13A1 but not CAPN15 following respiratory syncytial 
virus (RSV) infection (SI Appendix, Fig. S4 E and F).

MAVS Is Mislocalized in the Absence of Functional ATP13A1. We 
further tested the putative role of ATP13A1 in regulating IRF3 
localization by asking whether ATP13A1 overexpression could 
rescue appropriate IRF3 translocation. Indeed, we observed 
restoration of the translocation defect we observed in the knockout 
when ATP13A1 was overexpressed (Fig. 5A). ATP13A1 encodes 
a P5A-type ATPase localized to the endoplasmic reticulum 
(ER) (42, 43) whose yeast homolog spf1 has been shown to be 
involved in the unfolded protein response (44). However, in our D
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Fig. 4. Arrayed validation and RNA sequencing of IRF3 translocation hits. (A) IRF3 translocation in HeLa cells in response to SeV stimulation for the indicated 
genes. *Adjusted P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 throughout. Two-sided P values for A–D were calculated by computing the delta AUC for 
the feature of interest between cells in each well and nontargeting control cells (minimum n = 3,000); delta AUCs for all wells containing cells with an sgRNA of 
interest were then compared to nontargeting delta AUCs using a t test; P values were combined using Fisher’s method and corrected using the Benjamini–Hochberg 
procedure. (B) RIG-I activation in HeLa cells in response to SeV stimulation for the indicated genes. (C) IRF3 translocation defects in U937 cells in response to SeV 
stimulation for the indicated genes. (D) RIG-I activation in HeLa cells in response to hpRNA stimulation for the indicated genes. (E) Normalized enrichment score 
(NES) computed via GSEA for ISGs (genes significantly enriched in nontargeting control cells with transfected hairpin RNA relative to unstimulated nontargeting 
control cells). P values were obtained from the gseapy package using 1,000 permutations over all gene sets considered and corrected using the Benjamini–
Hochberg procedure. (F) Heatmaps showing z-scored gene expression for ISGs in (E) in response to hpRNA or SeV treatment for 6 or 15 h. (G) GSEA results show 
increased serine-type endopeptidase activity (TADA2B, MED16, and MED24), NOD-like receptor signaling (TADA2B), and lysosomal lumen components (MED16 and 
MED24). P values were obtained from the gseapy package using 1,000 permutations over all gene sets considered and corrected using the Benjamini–Hochberg 
procedure. (H). Enrichr results for genes that were decreased compared to positive controls DDX58 and MAVS in response to SeV stimulation (15 h) show significant 
enrichment of nucleolus components and small nucleolar RNAs for CAPN15, while ATP13A1 had a significant decrease in mitochondrial components. Enrichr P 
values are computed using the Fisher exact test and adjusted using the Benjamini–Hochberg procedure.D
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mammalian HeLa ATP13A1 knockout, we found no increased 
ER stress (SI Appendix, Fig. S5C). A putative transporter, it has 
been hypothesized to be an ion pump for divalent cations such as 
manganese, calcium, and magnesium (42, 45); however, adding 
divalent cations to the culture media did not rescue IRF3 

translocation in ATP13A1 knockout cells (Fig.  5B). Recently, 
ATP13A1 was shown to be a protein dislocase responsible for the 
proper targeting of mitochondrial tail-anchored proteins (46). 
Since MAVS is a tail-anchored mitochondrial protein critical for 
robust IRF3 translocation, we examined MAVS localization in 
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ATP13A1 knockout cells, finding that indeed, the fraction of 
mitochondrial and peroxisomal MAVS was reduced in ATP13A1 
knockout cells, while the fraction of MAVS in the ER was elevated 
(Fig. 5 C and D). We further confirmed this effect by examining 
MAVS mitochondrial localization in hTERT-immortalized 
primary BJ1 cells by confocal microscopy, finding that MAVS 
mitochondrial localization was greatly reduced in ATP13A1 
knockouts as well as overall MAVS levels, in line with observations 
from a recent paper (47) (Fig. 5 E and F).

Discussion

In this study, we applied optical pooled screens at the genome-
wide scale, scaling up our original optical pooled screening tech-
nology from screens of a few thousand genes to over 20,000. We 
used the resulting high-dimensional, single-cell resolution dataset 
to identify regulators of IRF3 subcellular localization. Secondary 
screens were highly correlated with primary screen data despite 
modest cellular sampling in the primary screen (median 484 cells 
per gene), highlighting the remarkable robustness and statistical 
power achievable with the optical pooled screening method at 
large scales. A sensitivity analysis (SI Appendix, Fig. S1I) revealed 
that for the IRF3 translocation phenotype, an effect size 50% that 
of strong positive controls could be detected with 200 cells/gene 
in a genome-wide screen (FDR-adjusted P value < 0.001), and 
89% of genes in our screen had at least this number of cells. We 
also applied deep learning analysis to identify latent morphological 
features in our image-based genome-wide dataset, which helped 
identify three peroxisome regulators (VHL, SEPHS1, and 
ZCCHC14, validated via arrayed knockouts) and a group of RNA 
processing genes that alter the cytoplasmic localization of SeV.

We confirmed seven regulators of IRF3 translocation via arrayed 
experiments and investigated five of these regulators through RNA 
sequencing, confirming expected (signed) differences in ISG 
induction by SeV. Importantly, we also confirmed ISG induction 
in response to a synthetic hairpin RNA, showing that these genes 
indeed act to directly regulate IRF3 pathway induction rather than 
simply modulating SeV entry or replication. ATP13A1, a strong 
positive regulator that has recently been identified as a mitochon-
drial tail-anchored protein dislocase (46), resulted in profound 
loss of IRF3 translocation upon knockout. We hypothesized and 
confirmed that MAVS, a mitochondrial tail-anchored protein 
critical for robust IRF3 translocation, is mislocalized in the 
absence of ATP13A1, which results in loss of MAVS from both 
mitochondrial and peroxisomal membranes with a concomitant 
increased localization to the ER. We also identified CAPN15, a 
cysteine protease and member of the SOL calpain family, as a 
positive regulator. Little is known about CAPN15, whose prote-
olytic targets have not been identified, but pathogenic variants of 
the gene result in microphthalmia and cataracts in humans (48). 
Through RNA sequencing, we found that snoRNP components 
were down-regulated in the presence of the CAPN15 knockout. 
This may decrease snoRNA production, thereby contributing to 
reduced activation of RIG-I and consequently, IRF3 (49). Among 
negative regulators, we identified and validated two members of 
the Mediator complex, MED16 and MED24. In addition to the 
known role of these Mediator components in transcriptional ter-
mination regulation (SI Appendix, Fig. S3D) (50), we found that 
knockouts lead to higher IRF3 translocation and ISG expression 
and further identified consequences of knockouts using RNA 
sequencing and pathway analysis. Specifically, we found decreased 
SUMOylation activity, which negatively regulates IRF3/7 (51), 
and increased expression of lysosomal lumen components, which 
can increase antiviral gene expression (52).

In summary, we improved the imaging throughput of optical 
pooled screening by over fourfold and applied it at the genome-wide 
scale, discovering positive and negative regulators of viral sensing 
upstream of IRF3 translocation as well as modulators of SeV pro-
tein localization and peroxisomal biogenesis. Optical pooled 
screening was previously used to assay two to four channels, but 
here, we image as many as seven channels at a time, enabling a 
highly multidimensional assessment of spatially defined molecular 
and cellular morphological features at the single-cell level. As an 
example, we took advantage of our multidimensional data to iden-
tify genes that altered IRF3 translocation without greatly affecting 
SeV load (Fig. 2E), as expected for genes that regulate IRF3 
directly. We also identified genes that regulate SeV protein local-
ization, providing a feasible approach to identify host factors 
affecting viral trafficking and the formation of viral replication 
foci. Single-cell multichannel images also enable advanced post 
hoc analysis of the screening data, which we demonstrated here 
by applying a pretrained neural network model and a second 
model trained via an autoencoder to extract unbiased feature sets 
that helped identify regulators of peroxisomes, and factors impact-
ing mRNA processing and SeV localization. The implementation 
of widely applicable optical pooled screening protocols with 
increased throughput and phenotype dimensionality—as well as 
analysis techniques to process the complex datasets produced—
will enable many discoveries to be made in future high-dimensional 
genome-wide optical pooled screens. The results will systematically 
link genes to important cellular functions and processes by lever-
aging high-content phenotypic readouts including morphology, 
subcellular molecule localization, and additional human- and 
machine-readable molecular and cellular features derived from 
high-resolution image measures.

Materials and Methods

Library Cloning, Lentivirus Production, Transduction, and Next-Generation 
Sequencing of Libraries. Libraries were cloned as previously described (21) into 
a CROP-seq-puro-v2 (Addgene #127458) backbone. Lentivirus was then produced 
and transduced as previously described (21). For library transductions, multiplicity 
of infection was estimated by counting colonies after sparse plating and antibiotic 
selection. Genomic DNA was also extracted for NGS validation of library representa-
tion. Genomic DNA was extracted using an extraction mix as described above. 
Barcodes and sgRNAs were amplified by PCR from a minimum of 100 genomic 
equivalents per library using JumpStart 2X Master Mix (initial denaturation for 
5 min at 98 °C, followed by 28 cycles of annealing for 10 s at 65 °C, extension for 
25 s at 72 °C, and denaturation for 20 s at 98 °C).

Sendai Virus Infection, Phenotyping, and In Situ Sequencing for Genome-
Wide IRF3 Screen and Secondary Screen. HeLa-TetR-Cas9 cells were trans-
duced with BFP-PTS1, and a single clone expressing the reporter was selected. 
For screening, cells were selected with puromycin (1 μg/mL) for 3 d after trans-
duction, and library representation was validated by NGS. Cas9 expression was 
induced with 1 μg/mL doxycycline for 1 wk, and cells were then seeded in six 
6-well glass-bottom dishes at 400,000 cells/well 2 d prior to fixation. Sendai virus 
(Cantell strain, ATCC VR-907) was added at an MOI of 10 in 400 µL media/well 
for 45 min at 4 °C with rotation; the plate was quickly washed with media, and 
fresh media added, allowing the virus to replicate for 15 h prior to fixation. Thirty 
minutes before fixation, 50% of the media was exchanged, and MitoTracker Deep 
Red added to cells at 37°C at a final concentration of 7 nM. Cells were fixed by 
removing media and adding 4% paraformaldehyde (Electron Microscopy Sciences 
15714) in PBS for 30 min.

Peroxisomes and mitochondria were imaged prior to permeabilization 
with 100% ice-cold methanol for 20 min. The permeabilization solution was 
then carefully exchanged with PBS-T wash buffer (PBS + 0.05% Tween-20) by 
performing six 50% volume exchanges followed by three quick washes. Cells 
were stained with primary antibodies in 3% BSA (VWR catalog #97061-422) in 
PBS overnight for pIRF3 (1:250, CST catalog #29047, RRID:AB_2773013), RIG-I D
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(1:650, AdipoGen catalog #AG-20B-0009, RRID:AB_2490189), and SeV (1:2,500, 
Abcam catalog #ab33988, RRID:AB_777877) in 1:75 RiboLock, washed 3× in 
PBS-T, and stained with secondary antibodies for 1 h with 1:1,000 anti-rabbit 
AF532 (Thermo Fisher Scientific catalog #A-11009, RRID:AB_2534076), 1:1,000 
anti-mouse AF594 (Thermo Fisher Scientific catalog #A-21203, RRID:AB_141633), 
1:300 anti-chicken DyLight 755 (Thermo Fisher Scientific catalog #SA5-10075, 
RRID:AB_2556655) in 1:200 RiboLock, washed 6× in PBS-T, and stained with 
YF488-conjugated anti-MDA5 (1:1,000, custom conjugation of Proteintech 
catalog #21775-1-AP, RRID:AB_10734593) in 1:200 RiboLock. Cells were then 
stained with DAPI (500 ng/mL in 2× SSC with 1:75 RiboLock) and imaged.

After phenotyping, the sgRNA sequence was reverse-transcribed in situ for 9.5 h 
at 37 °C using 1× RevertAid RT buffer, 250 μM dNTPs, 0.2 mg/mL BSA, 1 μM 
RT primer, 0.8 U/μL RiboLock RNase inhibitor, and 4.8 U/μL RevertAid H minus 
reverse transcriptase in 750 μL/well. After reverse transcription, cells were washed 
5× with PBS-T and postfixed using 3% paraformaldehyde and 0.1% glutaralde-
hyde in PBS for 30 min, followed by washing with PBS-T three times. Samples 
were then incubated in a padlock probe and extension–ligation reaction mixture 
(1× Ampligase buffer, 0.4 U/μL RNase H, 0.2 mg/mL BSA, 100 nM padlock probe, 
0.02 U/μL TaqIT polymerase, 0.5 U/μL Ampligase, and 50 nM dNTPs) for 5 min at 
37 °C and 90 min at 45 °C and finally washed two times with PBS-T. Circularized 
padlocks were amplified using a rolling circle amplification mix (1× Phi29 buffer, 
250 μM dNTPs, 0.2 mg/mL BSA, 5% glycerol, and 1 U/μL Phi29 DNA polymerase) 
at 30 °C overnight. In situ sequencing was performed as previously described using 
sequencing primer oSBS_CROP-seq for 12 cycles. Secondary screening was per-
formed similarly to the genome-wide screen, but phenotyping was restricted to 
DAPI, pIRF3, RIG-I, and SeV, and seven cycles of in situ sequencing were performed.

Fluorescence Microscopy. All in situ sequencing images were acquired using a 
Ti-2 Eclipse inverted epifluorescence microscope (Nikon) with automated XYZ stage 
control and hardware autofocus. An LED light engine (Lumencor CELESTA Light Engine) 
was used for fluorescence illumination, and all hardware was controlled using NIS-
Elements software. In situ sequencing cycles were imaged without filter switching to 
increase throughput (that is, one channel imaged across the entire plate prior to switch-
ing to the subsequent channel) using a 10× 0.45 NA CFI Plan Apo λ objective (Nikon) 
with the following filters (Semrock) and exposure times for each base: G (546-nm laser 
at 30% power, emission 575/30 nm, dichroic 552 nm, and 200 ms), T (546-nm laser 
at 30% power, emission 615/24 nm, dichroic 565 nm, and 200 ms), A (637-nm laser 
at 30% power, emission 680/42 nm, dichroic 660 nm, and 200 ms), and C (637-nm 
laser at 30% power, emission 732/68 nm, dichroic 660 nm, and 200 ms). Phenotyping 
images were also imaged without filter switching and acquired using a 20× 0.75 NA 
CFI Plan Apo λ objective (Nikon) with the following filters (Semrock unless otherwise 
noted) and exposure times: BFP-PTS1 (405-nm laser at 10% power, Chroma Multi 
LED set #89402, 200 ms), DAPI (405-nm laser at 5% power, Chroma Multi LED set 
#89402, 50 ms), CF488 (477-nm laser at 30% power, Chroma Multi LED set #89402, 
200 ms), AF532 (546-nm laser at 10% power, emission 575/30 nm, dichroic 552 nm, 
and 200 ms), AF594 (546-nm laser at 10% power, emission 615/24 nm, dichroic 
565 nm, and 200 ms), MitoTracker Deep Red (637-nm laser at 10% power, emission 
680/42 nm, dichroic 660 nm, and 200 ms), and DyLight 755 (749-nm laser at 10% 
power, emission 820/110 nm, dichroic 765 nm, and 200 ms).

IRF3 Reporter Sendai and VSV Secondary Screen. For live-cell screening, 
HeLa-TetR-Cas9 cells were transduced with pTRIP-GFP-IRF3 (Addgene #127663). 
Fluorescent cells were sorted by FACS (Sony SH800) and resorted to select for 
cells with stable expression. Cells were selected with puromycin (1 μg/mL) for 
3 d, and Cas9 expression was induced with 1 μg/mL doxycycline for 1 wk. Cells 
were then seeded onto 6-well cover glass-bottom plates 2 d prior to translocation 
experiments. Cells were stimulated with SeV for 15 h or VSV at MOI 2.5 (ATCC 
catalog #VR-1238) for 18 h prior to fixation with 4% paraformaldehyde for 30 
min and initiation of the in situ sequencing protocol. After phenotyping, cells 
were fixed, and the in situ sequencing protocol (reverse transcription, gap-fill, 
and rolling circle amplification) was performed, followed by seven bases of SBS.

Arrayed Validation. Top-ranking genes confirmed from the pooled secondary 
screen were validated with individual sgRNAs. For each gene, two sgRNAs were 
tested. HeLa-TetR-Cas9 cells expressing pTRIP-GFP-IRF3 (Addgene #127663) 
were prepared and assayed as in the pooled screen, except that assays were 
carried out in 96-well glass plates and cells were seeded at 8,000 cells/well. For 
hpRNA stimulation, cells were seeded in 96-well plates and transfected with 

1μg/mL hpRNA (InvivoGen tlrl-hprna-100) in 10  μL/well LyoVec (InvivoGen 
lyec-1) for 24 h. For IAV (ATCC catalog #VR-95) and RSV (ATCC catalog #VR-26PQ) 
infection, cells were treated with virus at an MOI of 1 for 15 h. For arrayed 
validation of genes with peroxisome defects, HeLa-TetR-Cas9-BFP-PTS1 cells 
were used. For arrayed validation in U937 cells (ATCC catalog #CRL-1593.2, 
RRID:CVCL_0007), cells were first transduced with lentiCas9-Blast (Addgene 
#52962) and selected using 20 μg/mL (Thermo Fisher Scientific A1113903) and 
then transduced with sgRNAs and selected using 2 μg/mL puromycin (Thermo 
Fisher Scientific A1113803) for 5 d. Prior to infection with SeV, U937 cells were 
plated in 96-well plates at 40,000 cells/well with 100 ng/mL PMA (InvivoGen 
tlrl-pma). After 24 h, PMA was removed, and fresh RPMI with 10% FBS, 1% 
Pen–Strep was added. Media were again exchanged 24 h after PMA removal, 
and 41 h after PMA removal, SeV was added at an MOI of 10 to the cells, which 
were fixed 48 h after PMA removal.

BJ1 MAVS Localization. For experiments with BJ1 cells (BJ-5ta – CRL-4001), 
cells were transduced with Cas9 and sgRNAs as described for U937 cells but with 
puromycin selection for 3 d. BJ1 cells were seeded at 8,000 cells/well and stained 
for mitochondria using MitoTracker Deep Red at 100 nM for 30 min at 37 °C prior 
to fixation. Cells were permeabilized with ice-cold methanol for 20 min, washed 
with PBS-T, and stained with a YF488-conjugated MAVS (Proteintech catalog 
#14341-1-AP, RRID:AB_10548408) at 1:300 for 2 h before imaging. Cells were 
imaged on an Andor Dragonfly Confocal Microscope.

Split-GFP Localization Experiments. Subcellular localization of MAVS was 
determined using a split-GFP approach as previously described (53). Targeting 
sequences for MICU1 (54), LACTB, and the targeting sequences PTS1 and KDEL 
(55), GFP1-10 lentiviral vectors were transduced into Cas9-expressing HeLa 
cells. Transduced cells were transiently transfected with MICU1, PTS1, or VAMP2 
GFP11 plasmids to identify cells expressing the mitochondrial, peroxisomal, or 
ER targeting constructs, respectively, which were isolated via flow cytometry. Cells 
were then transduced with a full-length mCherry MAVS GFP11 lentiviral vector, 
and MAVS-positive cells were sorted based on mCherry expression. Finally, cells 
were transduced with a nontargeting or ATP13A1 sgRNA in the CROP-seq-puro-v2 
(Addgene #127458) backbone and selected via puromycin prior to plating and 
assessment of relative MAVS localization.

Indel Sequencing of Arrayed Knockouts. Genomic DNA was extracted as 
previously described (21), and targeted PCR performed to amplify target gene 
regions for each sgRNA. Following next-generation sequencing, editing rates 
were assessed using CRISPResso version 2.038 (56) with parameters –flexiguide_
homology 80–quantification_window_size 10 –quantification_window_center 
-3 –exclude_bp_from_left 0 –exclude_bp_from_right 0.

Western Blotting of ATP13A1 and MAVS. Cells were pelleted and resus-
pended in lysis buffer (150 mM NaCl, 1% Triton X-100, and 50 mM Tris-HCl, pH 
7.5, with one protease inhibitor tablet added to 10  mL buffer, Sigma catalog 
#11873580001) at 1 million cells per 100 μL. Following incubation for 30 min 
at 4 °C, lysates were centrifuged at 10,000 × g for 5 min, and supernatant was 
stored at −80 °C. Lysates were then thawed on ice and Laemmli 6× sample buffer, 
SDS, reducing (Boston Bioproducts catalog #BP-111R) was added prior to loading 
on NuPAGE 4 to 12% Bis-Tris Gels (Thermo Fisher catalog #NP0321). Samples 
were transferred to nitrocellulose membranes using iBlot2 (Thermo Fisher), and 
blocking was performed in TBS Tween with 5% nonfat milk. Primary antibodies 
(1:500 ATP13A1 Proteintech catalog #16244-1-AP and 1:1,000 MAVS Proteintech 
catalog #14341-1-AP) were incubated with samples overnight, and secondary 
rabbit antibody was added for 1 h prior to visualization with chemiluminescence.

RNA-Seq Analysis of Clonal Knockout Cell Lines. Clonal knockout cell lines 
and wild-type control cells were plated in 96-well format at a density of 8,000 
cells/well. After 24 h, cells were transfected with 1 μg/mL hpRNA (InvivoGen tlrl-
hprna-100) in 10 μL/well LyoVec (InvivoGen lyec-1), while cells infected with 
Sendai virus at an MOI of 10 were infected after 33 and 42 h for 15-h and 6-h 
Sendai virus incubations. After 48 h, cells were washed with PBS, lysed at room 
temperature for 5 min in 21  μL TCL buffer (QIAGEN, supplemented with 1% 
beta-mercaptoethanol) per well, and then stored at −80 °C. Smart-seq2 was 
performed as described (57). Libraries were sequenced on a NovaSeq 6000 
(Illumina) using the v1.0 S4 300-cycle kit (paired end, 150 cycles forward, and 
150 cycles reverse).D
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Quantification and Statistical Analysis.
Image analysis. Images of cell phenotype and in situ sequencing of perturbations 
were manually aligned during acquisition using nuclear masks to calibrate the 
plate position to each of the four corner wells during screening. Alignment was 
then refined computationally via cross-correlation of DAPI across cycles or between 
individual imaging channels within sequencing cycles since these were acquired 
separately. For SBS and phenotyping, alignment across channels and imaging acqui-
sitions (12 SBS cycles and two phenotyping acquisitions) were performed using 
cross-correlation and a high upsample factor (5) to ensure alignment precision. 
Unlike our previous work, this alignment was then further refined using ORB feature 
detection (skimage.feature.ORB, n_keypoints = 200 and fast_threshold = 0.05)  
and RANSAC to filter detected ORB features (skimage.measure.ransac(Euclidean 
Transform, min_samples = 2, residual_threshold = 1, and max_trials = 200). This 
allowed for refinement of image alignment and additional image rotation unlike 
the cross-correlation algorithm which allowed translation alone. Nuclei and cells 
were detected and segmented as previously described (20). IRF3 translocation 
was quantified by calculating pixel-wise correlations between the nuclear DAPI 
channel and the IRF3 channel (reporter or antibody staining). Mitotic cells were 
removed based on maximum DAPI signal and cell area. In situ sequencing read 
calling was performed as previously described (20). Data analysis functions were 
written in Python using Snakemake for workflow control (58).
Optical pooled screen analysis. Cells were segmented by thresholding the 
DAPI signal to identify nuclei and expanding the resulting regions using the 
watershed method as previously described (20). Only cells with a minimum of 
one read matching a barcode in the library were analyzed. Mitotic or apoptotic 
cells were removed by filtering cells with unusually high or low nuclear/cell area 
and DAPI signal. IRF3 translocation was calculated by determining the pixel-wise 
correlation between DAPI and the IRF3 antibody signal or reporter signal within 
the segmented nuclear area. For the genome-wide screen, only genes with a 
minimum of one read matching an sgRNA in the library and two sgRNAs with at 
least 30 cells/sgRNA were considered for analysis. Features were normalized on a 
per-cell basis relative to nontargeting control cells in the same well by subtracting 
the median for nontargeting control cells and dividing by the nontargeting control 
MAD × 1.4826 (59), and scores for features relative to nontargeting controls were 
determined by calculating differences in cumulative AUCs (shaded area in Fig. 1F). 
These delta AUCs were averaged over sgRNAs for a given gene, and significance 
was determined by comparing delta AUCs for individual sgRNAs to distributions 
bootstrapped from nontargeting control cells (bootstrapped 100,000 times). 
Gene-level p values were aggregated across sgRNAs using Fisher’s method and 
then corrected using the Benjamini–Hochberg procedure.
Deep learning analysis. For both autoencoder and transfer learning, 46 × 46 
single-cell cropped images of individual channels were generated for cells whose 
center was at least 13 pixels away from the nearest cell center. For transfer learn-
ing, these single-cell crops were then resized to 299 × 299 images, and each 
channel was repeated three times to generate 299 × 299 × 3 images of the size 
required to extract features using the Xception network model (60) provided by 
Keras. Image intensities were renormalized to be between 0 and 255, and features 
were extracted from the final layer (“avg_pool”) of the Xception network with a 
feature size of 2048. Features with less than 0.1 coefficient of variation were 
dropped before further analysis. Only genes with >=30 cells/sgRNA >=2 sgRNAs 
were considered for further analysis.

The autoencoder model was adapted from a previously published model 
(61), and the latent feature size was set to 2048. The model was run separately 
for each channel of the 7-channel image dataset for up to 250 epochs, and the 
model with the lowest test loss was selected for each channel. The model was 
trained and tested on 1% of the cells randomly selected from the larger set 
with 0.25% of the cells as test dataset, and 0.75% were used for training. The 

trained model was then used to extract latent features from the entire dataset. 
2048-length feature vectors for each cell were then combined as described for 
the transfer learning.

PHATE clustering was performed with knn = 5 and other parameters at default 
settings, and Leiden clustering performed with resolution = 3.
Arrayed validation. For each sgRNA, the IRF3 translocation or RIG-I activation 
change was computed relative to nontargeting control cells by computing the dif-
ference in AUCs between the cumulative distributions for nontargeting and sgRNA 
of interest. Delta AUCs for 3 to 4 replicate wells per sgRNA in each experiment 
were then compared using a t test and corrected using the Benjamini–Hochberg 
procedure to assess statistical significance.
RNA-seq quantification. Kallisto was used to quantify transcript abundance 
using AB856846.1 for the Sendai genome. EdgeR was used to assess differen-
tial gene expression with default parameters for the estimateDisp and exactTest 
functions (62, 63). Only transcripts with cpm > 1 in at least two samples were 
considered. Biological replicates were defined as replicate stimulations with at 
least two sgRNAs for genes affecting IRF3 translocation. GSEA was performed on 
VST-transformed data using the DESeq2 package (64). ISGs were defined as genes 
with minimum expression >3 logCPM that also demonstrated logFC > 3 and 
FDR < 0.01 between nontargeting unstimulated and nontargeting stimulated 
with synthetic hpRNA for 24 h.

Data, Materials, and Software Availability. Supplementary datasets 2 and 3 
are available at Zenodo (65). Code is available at https://github.com/beccajcarl-
son/IRF3OpticalPooledScreen (66). RNA-seq data have been deposited in the 
Gene Expression Omnibus at GSE179288. Image data are publicly available on 
Google Cloud at gs://opspublic-east1/IRF3OpticalPooledScreen, and one example 
field of view has been uploaded to the GitHub repository. The BFP-PTS1 plasmid 
has been deposited to Addgene (#199433).
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