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Lupus nephritis (LN) is a frequent complication of systemic 
lupus erythematosus (SLE)1,2, for which current therapies are 
both toxic and insufficiently effective2,3. Despite the rapid pace 

of immunologic discovery, most clinical trials of rationally designed 
therapies have failed in both general SLE and LN, with only one new 
drug approved for the treatment of SLE in the last five decades2,4. 
Thus, there is a pressing need to decipher the immune mechanisms 
that drive LN.

Current knowledge of the molecular pathways dysregulated 
in SLE comes mainly from the unbiased analysis of blood cells5; 
however, the extent to which blood reflects the inflamed tissue is 
unclear. Immunohistochemistry and flow cytometry studies of kid-
ney biopsies have indicated the presence of infiltrating subpopula-
tions of immune cells6–8 but cannot reveal previously unidentified 
cell types or activation states. Mouse models of LN provide detailed 
knowledge of the molecular pathways and cell types active in their 
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kidney9 but vary in key aspects such as the degree of immune cell 
infiltration, the role of interferon and Fc receptors, and responses to 
therapeutic interventions.

It is thus clear that the study of LN can greatly benefit from a 
resource allowing the generation and preliminary testing of new 
hypotheses. Single-cell transcriptomics is a powerful tool capable of 
producing a complete catalogue of cell types and states present in a 
given sample. Here, we employed it in the analysis of kidney, urine 
and blood samples from patients with LN and healthy individuals, 
while utilizing a standardized protocol to process patient samples 
acquired across a distributed clinical and research network. Our 
findings delineate the complex array of leukocytes active in human 
LN kidneys. Analysis of blood reveals both similarities to and differ-
ences from the molecular signatures detected in kidneys, highlight-
ing the limitations of blood samples for deciphering renal disease 
processes. We further show that urine cells have the potential to 
serve as surrogates for kidney biopsies in assessing the molecular 
activation state of subsets of infiltrating leukocytes.

Results
Isolation and processing of kidney cells for single-cell transcrip-
tomics. To establish a uniform pipeline to analyze kidney biopsy 
samples from multiple institutions, we evaluated several strategies for 
their preservation and transport. Cryopreservation of intact kidney 
tissue immediately after acquisition, followed by batched processing 
at a central site, offered robust leukocyte yields, intact staining for 
lineage markers and high-quality transcriptomes (Supplementary 
Fig. 1a–e). We employed this pipeline to analyze kidney biopsies 
from 24 patients with LN and 10 control samples, acquired from 
living donor kidney biopsies (Fig. 1a and Supplementary Table 1). 
Approximately half of the LN samples, independent of histologic 
classification, provided leukocyte yields well above those obtained 
from control samples (Supplementary Fig. 2a,b), including B cells, 
T cells, macrophages and other leukocytes based on flow cytometry 
(Supplementary Fig. 2c,d).

Viable cells were sorted into 384-well plates for single-cell RNA 
sequencing (scRNA-seq) using a modified CEL-Seq2 protocol10. 
Since our focus was on characterizing the immune cells within LN 
kidneys, 90% of the cells sequenced from each sample were CD45+ 
cells, and the rest were CD45−CD10+ cells. The quality of the col-
lected sequencing data was comparable across plates, and higher 
in leukocytes compared with epithelial cells, reflecting the lower 
viability of the latter in the processed samples (Supplementary  
Fig. 1f,g). Principal component analysis performed on the gene 
expression data from 2,736 leukocytes and 145 epithelial cells  
indicated that the main sources of variability in the data cor-
responded to cell types, rather than batch or technical factors 
(Supplementary Fig. 2e,f).

Stepwise cell clustering identifies cells of the myeloid, T, natu-
ral killer (NK), B and epithelial lineages. To identify the lineage 
and activation state of the cells extracted from kidney samples, 
we clustered them based on their gene expression data, taking a 
stepwise approach (Fig. 1b). Low-resolution clustering of all kid-
ney cells identified 10 clusters (Supplementary Fig. 2g), which we 
labeled as myeloid cells (clusters C4 and C6), T/NK cells (C0, C1, 
C2 and C5), B cells (C3, C8), dividing cells (C9) and kidney epithe-
lial cells (C7), based on the expression of canonical lineage markers 
and other genes specifically upregulated in each cluster. Sensitivity 
analysis demonstrated that this labeling of cells was highly robust 
(Supplementary Table 2).

We next clustered the cells of each lineage separately, and iden-
tified 21 immune cell clusters and a single epithelial cell cluster 
(Fig. 2a), each containing cells from multiple patients and plates 
(Supplementary Tables 3 and 4). Saturation analysis indicated that 
the size of the present cohort is adequate to reveal most of the major 

clusters in LN kidneys (Supplementary Fig. 2h). Only three clusters 
were substantionally represented in living donor control samples 
(Supplementary Fig. 2i and Supplementary Table 3), as verified by 
analyzing two additional living donor control samples, using a drop-
let-based approach to maximize the number of processed cells; this 
increased the number of living donor high-quality cells from 183 
to 305, yielding largely the same results (Supplementary Table 3).  
For clusters that were present in sufficient numbers in both patients 
with LN and living donor controls, we performed a cluster-based 
differential expression analysis, comparing the two patient popu-
lations; the results of this analysis (Supplementary Table 5) are 
reported below.

The renal and systemic interferon responses are highly correlated. 
Type I interferons are elevated in the peripheral blood of patients 
with lupus11. To assess the extent of this phenomenon in kidney, 
we calculated for each cell an interferon response score, defined 
as the average expression of several known interferon-stimulated 
genes (ISGs; Supplementary Table 6). We found that in all patients 
but one there was a significant upregulation of this score in kidney 
cells compared with living donor controls (Fig. 2b). Furthermore, 
this upregulation was observed in all clusters, although it was less 
pronounced in the kidney epithelial cells (Fig. 2c). Two clusters, 
one containing B cells and the other CD4+ T cells (CB3 and CT6, 
respectively; see below), demonstrated particularly high values 
of the interferon response score; the majority of these cells were 
extracted from two patients (patient IDs 200-0841 and 200-0874; 
Supplementary Table 3). These two patients also featured B cells 
and CD4+ T cells with a substantially lower interferon score, sug-
gesting that the secretion of this cytokine may be spatially localized, 
either in the kidney or outside of it. When we compared the inter-
feron response score in matched blood and kidney samples from 
10 patients with LN we found a significant correlation (Spearman’s 
ρ = 0.733, P = 0.016; Fig. 2d), indicating that the interferon response 
is mainly an extrarenal process.

Classification and annotation of myeloid cell clusters reveal resi-
dent and infiltrating populations. Focused analysis of the 466 cells 
in myeloid clusters C4 and C6 revealed 5 finer clusters (clusters 
CM0–CM4; Fig. 3a and Supplementary Fig. 3a–c). We determined 
their putative identity by comparing their global gene expression 
patterns with those of published reference monocyte/dendritic cell 
(DC) clusters identified in blood samples of healthy individuals 
using scRNA-seq12 (Fig. 3b,c), and by the expression of canonical 
lineage markers. Cluster CM3 was closest to CD1C+ DCs (reference 
clusters DC2 and DC3) or CLEC9A+ DCs (reference cluster DC1), 
in accordance with the expression of the canonical DC markers 
CD1C and FLT3 (Supplementary Fig. 3a), and the lack of expres-
sion of monocyte markers CD14 and CD16. Cluster CM0 cells were 
most similar to CD16+ patrolling monocytes (reference clusters 
Mono2 and DC4), with very high expression of CD16 (FCGR3A) 
and CX3CR1 and low expression of CD14 and CCR2. Similar results 
were found for clusters CM1 and CM4, though their correlation 
scores with the reference clusters were notably lower and, in the case 
of CM4, below a data-derived ‘assignability threshold’. CM1 cells 
expressed lower levels of CX3CR1 and CD16 than CM0, while CM4 
cells expressed even lower levels of these two genes and higher levels 
of CD14 and CD64 (FCGR1A), despite being dissimilar to classical 
CD14+ monocytes. These three clusters likely represent infiltrating 
kidney monocyte/macrophage subsets as they constitute a minority 
of myeloid cells in normal kidneys (Supplementary Table 3).

We next determined whether the pattern of gene expression in 
each cluster could indicate functional capabilities (Supplementary 
Fig. 3a). Cluster CM1 expressed upregulated levels of phagocytic 
receptors CD36 (SCARB3), SCARB2, CD68, CD163, NR1H3 (LXR) 
and GPNMB, and cluster CM4 expressed VSIG4, MSR1, CD163, 
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MERTK, STAB1 and CD209. Cells in CM1 and especially CM4 
had upregulated expression of C1Q, which acts as an opsonin for 
phagocytosis and promotes apoptotic cell clearance by enhancing 
the expression of MERTK and its soluble ligand GAS6 (refs. 13,14). 
They also demonstrated upregulated levels of CD169 (SIGLEC1), an 
endocytic receptor that is associated with a phagocytic and repara-
tive phenotype15. Cluster CM0 had the highest level of expression of 
inflammatory genes including TNF, S100A8, S100A9, NFKB1 and 
the WNT pathway activator TCF7L2. By contrast, CM4 expressed 
many genes associated with alternatively activated macrophages, 
including CD163 and SLC40A1 (ferroportin), which control iron 
homeostasis16; IGF1 and DAB2, both drivers of the alternatively 
activated phenotype17,18; and folate receptor beta (FOLR2), a recep-
tor expressed on alternatively activated CD14+ macrophages that 
are found in inflammatory and malignant tissues19.

Finally, since CM2 was the main cluster found in normal kidneys 
(Supplementary Table 3), it probably corresponds to steady-state 
kidney macrophages. This cluster demonstrated low expression of 
CD14, CD16, CX3CR1 and CCR2, and no clear similarity to the 
published reference clusters of peripheral myeloid subsets (Fig. 
3b,c). In comparison to the other macrophage subsets, CM2 upreg-
ulated several genes associated with tissue remodeling including 
MMP2, ADAMTS10 and HTRA1. These cells also upregulated 
BHLHE41, a gene expressed in microglia and lung resident mac-
rophage populations20, consistent with CM2 representing resident 
cells. Compared with CM2 cells from living donor controls, lupus 
CM2 cells expressed higher levels of ISGs, as well as anti-inflamma-
tory genes (GRN, TMSB4X, CREB5) and inhibitors of TLR signaling 
(GIT2, TNFAIP8L2), and lower levels of pro-inflammatory genes 
(ALOX15B, WNT5A) (Supplementary Table 5)20.
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Fig. 1 | An overview of the approach used for analyzing the cellular contents and molecular states of kidney and urine samples. a, Pipeline for collecting 
and processing kidney and urine samples. Both types of samples were frozen on collection, then shipped to a central processing site to minimize batch 
effects. b, Stepwise clustering of kidney cells. Initially, all cells were analyzed together (left heatmap), and the identified clusters were labeled as containing 
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Trajectory analysis identifies a continuum of intermediate states 
spanning patrolling, phagocytic and alternatively activated 
monocytes. Dimensionality reduction using either diffusion maps21 
(Fig. 3d) or t-Distributed Stochastic Neighbor Embedding22 (tSNE; 
Fig. 2a) indicated possible transitions between the three clusters of 
infiltrating monocytes/macrophages, with CM1 linking CM0 and 
CM4. Furthermore, since the cells in cluster CM0 tended to be the 

most similar to peripheral blood CD16+ monocytes, while the cells 
in cluster CM4 were the least similar (Fig. 3c), the suggested progres-
sion is from an inflammatory blood monocyte (CM0) to a phago-
cytic (CM1) and then an alternatively activated (CM4) phenotype. 
Indeed, we found a gradual reduction along the trajectory from 
CM0 to CM4 in the expression of NFKB1, an inflammatory gene; 
a transient increase in CD36, an important phagocytic receptor;  
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Fig. 2 | A summary of the stepwise clustering of kidney cells. a, Twenty-two clusters were identified; their putative identities are specified on the right. 
b, The distribution of the interferon response score in all patients with LN (blue), compared with the cells of the LD controls (red). c, The distribution of 
the interferon response score in all cells of patients with LN, separated into clusters (blue), compared with cells of the LD controls (red). In both b and 
c, false-discovery rate (FDR)-corrected ***P < 0.001; FDR-corrected **P < 0.01 (two-tailed Mann–Whitney U-test). The number of cells (n) used in each 
comparison is specified above the plot. The horizontal line designates the median interferon response score over the cells of the LD controls.  
d, A comparison of the interferon response score in kidney and in blood in 10 patients with LN for whom corresponding blood and kidney samples were 
available. The kidney score was calculated as the average over all kidney cells per compared patient; the blood score was calculated based on bulk RNA-
seq data of total PBMCs. IFN, interferon.
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and a continuous increase in MERTK, a key signaling receptor 
induced by CD36 (Supplementary Fig. 3d–f)23. Overall, a general 
downregulation of inflammatory genes and a concurrent upregula-
tion of genes associated with phagocytosis (Supplementary Table 6) 
was observed along this trajectory (Fig. 3e,f).

To further investigate this hypothesized within-kidney transi-
tion, we analyzed blood samples from two of the patients who had 
high numbers of CM1 and CM4 cells in their kidneys (patient IDs 
200-0873 and 200-0874; Supplementary Table 3). We used drop-
let-based scRNA-seq, yielding 1,411 sorted high-quality myeloid 
blood cells that included a subpopulation of CD16+ monocytes 
(Supplementary Fig. 3g). We next compared the gene expression 
data of each cell in this subpopulation with that of the myeloid 
kidney clusters. As expected, the vast majority of peripheral blood 
CD16+ cells were most similar to the CM0 cluster, with a few cells 
mapped to either CM1 or CM3 and no cell mapped to CM4 or CM2 
(Supplementary Fig. 3h). This held true when considering all sorted 
blood myeloid cells, not just those identified as CD16+ monocytes.

To determine whether the hypothesized differentiation begins 
before entering the kidney, we examined the relative upregulation 
of phagocytosis-associated genes in cluster CM1 compared with 
CM0, in both blood and kidney (Supplementary Fig. 3i–j). We 
found that while there was a significant increase in these genes in 
kidneys (P < 0.001, Mann–Whitney U-test), no such increase could 
be observed in blood.

These analyses are consistent with differentiation of CD16+ 
monocytes into CM1 and CM4 cells within the kidney, but do 
not rule out differentiation of a small number of blood cells cou-
pled with selective migration into the kidney. Furthermore, other 
schemes of transitions (or their absence) between these clusters are 
possible, and further investigation is required.

LN kidneys contain two clusters of NK cells and three clusters of 
CD8+ T cells. Clusters C0, C1, C2 and C5, comprising 1,764 cells, 
contained T cells and NK cells. A focused clustering of these cells 
separated them into seven finer clusters of NK, CD8+ T and CD4+ 
T  cells (clusters CT0–CT6; Fig. 4a and Supplementary Fig. 4a). 
Cluster CT1 contained NK cells, which could be identified by the lack 
of CD3E and CD3D combined with expression of CD56 (NCAM1) 
and DAP12 (TYROBP), as well as high expression of cytotoxic genes 
including PRF1, GZMB and GNLY. A similar cytotoxic program 
was observed in the CD8+ T-cell cluster CT2, pointing to a cyto-
toxic T lymphocyte (CTL) identity. A second population of CD8+ 
T cells, demonstrating high levels of the granzyme GZMK (ref. 24)  
rather than GZMB and GNLY, populated cluster CT4. These cells 
expressed relatively low levels of PRF1 compared with cluster CT2 
and also showed high expression of HLA-DR/DP/DQ molecules 
and CCR5, consistent with an earlier report25. Cluster CT5 could 
be further split into two subclusters (Fig. 4b and Supplementary 
Fig. 4b): a third CD8+ T-cell population (cluster CT5a), and a small 
population of NK cells (CT5b). The cells in cluster CT5a had fea-
tures of resident memory cells, including expression of ZNF683 
(HOBIT), ITGAE, ITGA1 and XCL1, and lack of KLF2 (refs. 26,27), 
and accordingly were relatively abundant in normal kidney biopsies 
(Supplementary Table 3). Cluster CT5b cells expressed TYROBP 
and CD56, suggesting an NK cell identity, but differed from CT1 
NK cells by higher expression of KIT, TCF7, IL7R and RUNX2, and 
lower expression of PRF1, GZMB, FCGR3A, TBX21 and S1PR5, 
consistent with the identification of these cells as tissue-resident 
CD56brightCD16− NK cells, in contrast to the CD56dimCD16+ NK cell 
features observed in CT1 (ref. 28).

It was previously reported that an exhaustion signature in periph-
eral blood CD8+ T cells of patients with SLE associates with lower 
flare rates29 and that such exhausted T cells are also detected in the 
kidneys of lupus mice30. In our data, however, all three CD8+ T-cell 
clusters (CT2, CT4, CT5a) expressed only low levels of canonical 

exhaustion markers (Supplementary Fig. 4c); this was probably not 
due to technical limitations, as PD-1 (PDCD1), CTLA4 and BTLA 
were highly expressed in the T follicular helper (TFH)-like cells 
(cluster CT3b—see the following section). We sorted CD8+ T cells 
from matched blood samples obtained at the time of kidney biopsy 
along with ten healthy control samples, and used data from bulk 
RNA-seq to measure an ‘exhaustion score’ defined as the average 
expression of a comprehensive, published list of exhaustion mark-
ers31 (Supplementary Table 6). We found that this exhaustion score 
was significantly higher in blood CD8+ T cells of patients with LN 
compared with those of healthy controls (P < 0.01, Mann–Whitney 
U-test), but not in kidney CD8+ T cells (Supplementary Fig. 4d–f), 
suggesting that the CD8+ T-cell exhaustion seen in blood does not 
occur in the affected organ.

Analysis of CD4+ T-cell subsets identifies five clusters, includ-
ing TFH-like cells. Clusters CT0, CT3 and CT6 contained CD4+ 
T cells. CT3 could be divided into two subclusters, with one (CT3a) 
containing cells expressing genes associated with T regulatory (Treg) 
cells, including FOXP3 and IKZF2 (HELIOS), and the other (CT3b) 
consisting of cells with low FOXP3 and features consistent with 
TFH cells, including the expression of CXCL13, CXCR5, PDCD1, 
MAF and CD200 (Fig. 4c and Supplementary Fig. 4g).

Cluster CT0 could be further split into two subclusters, the first 
containing primarily effector memory CD4+ T  cells (CT0a), with 
more frequent expression of PRDM1, CCL5 and CXCR6, and the 
second consisting of mostly CCR7+SELL+TCF7+ central memory 
T  cells (CT0b; Fig. 4d and Supplementary Fig. 4h). The simi-
lar expression of CD69 in both clusters suggests that CT0b cells 
are more likely to be central memory than naive CD4+ T  cells. 
Expression of TCF7, KLF2 and LEF1 may indicate an early cen-
tral memory T-cell (Tcm) phenotype of CT0b cells, in contrast to 
the late effector phenotype of CT0a cells32. Of note, CT0a was the 
only CD4+ T-cell cluster found with substantial frequency in liv-
ing donor samples (Supplementary Table 3). Differential expression 
analysis of this cluster indicated a dysregulation of ISGs in the LN 
samples (Supplementary Table 5).

While some LN kidney T cells have been previously annotated as 
TH1 and TH17 cells, in our data CD4+ T cells did not segregate into 
distinct clusters with characteristic effector lineage features. IFNG 
and CXCR3 could be identified in few CT0 cells, primarily within 
CT0a (Supplementary Fig. 4h). In contrast, IL17A, IL17F and CCR6 
were very rarely detected, and no IL4, IL5 or IL13 expression was 
observed. TBX21 and RORC were found in a minority of CT0 cells, 
with TBX21 much more frequently expressed in CD56dimCD16+ NK 
cells (cluster CT1) and CTLs (CT2; Supplementary Fig. 4a).

Finally, cluster CT6 contained CD4+ T  cells demonstrat-
ing exceptionally higher levels of ISGs, including ISG15, MX1, 
RSAD2, OAS3, IFIT1 and IFIT2, compared with other T  cells 
(Supplementary Fig. 4a).

Analysis of B-cell clusters reveals age-associated B cells (ABCs). 
Analysis of the 435 cells mapped to clusters C3 and C8 identified 
4 different B-cell clusters in LN samples, but almost no B cells 
in healthy kidneys (clusters CB0–CB3; Fig. 5a, Supplementary 
Figs. 5a and 2d and Supplementary Table 3). Cluster CB1 con-
tained plasmablasts/plasma cells, expressing high levels of XBP1 
and MZB1, as well as immunoglobulin genes. The cells in cluster 
CB3 demonstrated high levels of several ISGs, including IFIT1, 
IFIT2, IFIT3, ISG15, OAS3 and RSAD2. Expression of these genes  
was also detected in the other B-cell clusters, but at substantially 
lower levels.

Cluster CB0 cells had upregulated expression of activation mark-
ers such as CD27, CD86, IGJ and IGHG1, and low levels of IGHD 
and IGHM, suggesting an activated B-cell identity. Furthermore, we 
could detect in this cluster a gene expression signature consistent 
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with ABCs (Fig. 5b) that are implicated in both aging and autoim-
munity33. Based on a panel of genes reported to be differentially 
expressed in ABCs34, we computed for each cell in cluster CB0 a 
score representing the extent to which its gene expression pattern 
matched that expected by an ABC (‘ABC score’; Supplementary Table 
6). A continuous range of values of this score could be observed in 
cluster CB0, without a clear separation into distinct subpopulations 
(Fig. 5b). The ABC score per patient, calculated as the average of 
the ABC score over the CB0 cells of each patient, did not positively 

correlate with age (Spearman’s ρ = −0.255), suggesting that the pres-
ence of these cells indeed reflected disease rather than age.

The tSNE plot for the B cells suggested that cluster CB2 may 
contain multiple subsets (Supplementary Fig. 5b). Accordingly, we 
were able to split the cells in cluster CB2 into two subclusters (Fig. 
5c and Supplementary Fig. 5c): the first of these (CB2a), express-
ing the B-cell markers CD19 and CD20 (MS4A1), demonstrated 
upregulation of genes typical of naive B cells, including high levels 
of IGHD, IGHM, TCL1A and IL4R, and had nearly undetectable  
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expression of CD27; the other cluster (CB2b) expressed genes 
known to be upregulated in plasmacytoid DCs (pDCs) (Fig. 5c and 
Supplementary Fig. 5c), including PTPRS, GZMB, CLEC4C, CD123 
(IL3RA) and CD317 (BST2). To further validate this hypothesized 
identification, we calculated the Pearson correlation in gene expres-
sion between each cell in cluster CB2 and 3 independent sets of 
reference samples: FANTOM5 (refs. 35,36), containing bulk RNA-
seq data from 360 cell types, 17 of which are immune cell subsets; 
bulk RNA-seq data from 13 immune cell populations sorted from 
healthy individuals (Browne et al., manuscript in preparation); and 
an scRNA-seq data set, which includes data from 10 different clus-
ters of DCs and monocytes from healthy blood12. This analysis clas-
sified all CB2b cells as pDCs, using any of the three reference data 
sets (Supplementary Fig. 5d–f). Furthermore, as predicted almost 
all of the CB2a cells were classified as naive B cells, when compared 
with the data from Browne et al. (the only data set of the three tested 
that contained multiple B-cell populations).

Trajectory analysis reveals intermediate states between naive 
B cells and ABCs. Projecting the gene expression data of the B 
cells onto two dimensions using diffusion maps21, we found that 
the naive (CB2a) and activated (CB0) B cells formed a continuum 
of states, demonstrating a gradual increase in CD27 expression, 
and a parallel decrease in IGHD expression, reflecting activation  
(Fig. 5d–f). Furthermore, traversing the trajectory from CB2a to 
CB0 coincided with a continuous increase in the ABC score (Fig. 
5g), indicating that activation and differentiation into ABCs are 
highly correlated processes in our data. In contrast, very few cells 
occupied intermediate states between plasma and naive or activated 
B cells, consistent with a lack of differentiation into plasma cells in 
the inflamed kidney. However, as it was previously suggested37 that 
ABCs are preplasma cells, this question requires additional inves-
tigation, in particular employing B-cell receptor (BCR) repertoire 
analysis.

The dividing cell cluster includes T and NK cells. Cluster C9 
contained three subclusters. Two of them (CD1 and CD2) dem-
onstrated upregulated levels of mitochondrial genes and genes  

associated with a stress response (Supplementary Fig. 6a,b), indicat-
ing lower viability and/or quality, and were excluded from subse-
quent analyses. Cluster CD0 demonstrated elevated levels of genes 
participating in cell division. Classification of its cells by compari-
son with FANTOM5 indicated CD8+ T cells, NK cells and CD4+ Treg 
cells (Supplementary Fig. 6c).

Cluster-specific expression of genes associated with disease risk. 
Genome-wide association studies (GWASs) have identified numer-
ous risk alleles and their susceptibility genes in SLE and LN38,39. We 
analyzed the expression of these genes across the 22 clusters iden-
tified in kidneys, and found both expected and surprising cluster-
specific expression patterns (Fig. 6). For example, TLR7, whose role 
in nucleic acid sensing, B-cell activation and differentiation is well 
established40,41, is expressed here in pDCs, myeloid cells and B cells. 
We found HIP1, suggested to regulate DC activity42, to be expressed 
in resident memory CD8+ T cells (cluster CT5a), CD56brightCD16− 
NK cells (CT5b), conventional dendritic cells (cDCs) (CM3) and 
pDCs (CB2b). LBH, implied to modulate synovial hyperplasia43, was 
expressed here in T- and B-cell subsets, raising the possibility that 
the LBH risk locus impacts both fibroblasts and lymphocyte sub-
sets. We also observed cluster-specific expression of several poorly 
annotated SLE susceptibility genes, including WDFY4, CXorf21 and 
TMEM39A. Finally, our analysis identified both innate and adaptive 
immune cell subsets expressing several transcription factors associ-
ated with SLE, including ARID5B, CIITA, ETS, IKZF1, IKZF2, IRF7, 
IRF8 and PRDM1.

Expression patterns of chemokines and cytokines. We next ana-
lyzed the expression patterns of chemokine and cytokine receptors 
(Fig. 7a), focusing on receptors that were expressed by a relatively 
large fraction (>30%) of the cells in at least 1 cluster (this threshold 
was set based on the observed distribution of expression frequency, 
considering all receptors; Supplementary Fig. 7a). We found that a 
single chemokine receptor, CXCR4, was expressed in the majority 
of infiltrating cells in nearly all clusters (Supplementary Fig. 7b). 
A second chemokine receptor, CX3CR1, was expressed in most 
myeloid cells, as well as CD56dimCD16+ NK cells (cluster CT1) and 
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CTLs (CT2) (Supplementary Fig. 7c). Of note, the expression fre-
quency of other chemokine receptors previously implicated in LN, 
such as CCR5, CXCR3 and CCR2, was found to be much lower 
(Supplementary Fig. 7d–f). For cytokine receptors, we observed 
that IL2RG, encoding the common gamma chain and important for 
signaling of several cytokines, was frequently expressed in almost all 
clusters. TGFBR2, a subunit of the receptor for the cytokine TGF-
β, was also expressed on the majority of cells. IL10RA, IL27RA, 
IL17RA and TNFRSF1B were expressed by a large fraction of cells 
in all clusters, with the exception of the B cells.

To identify potential interactions between the cells acting in the 
inflamed kidney, we analyzed the expression patterns of the cor-
responding ligands. We found that the CXCR4 ligand, CXCL12, 
was expressed mainly in the cells in cluster CM4, as well as in the 
epithelial cells (Fig. 7b and Supplementary Fig. 7g). The latter were 
also the main source of the CX3CR1 ligand, CX3CL1 (Fig. 7c and 
Supplementary Fig. 7h). Of note, CM4 cells were in addition the top 
producers of CCL2 and CCL8 (Supplementary Fig. 7i); these are the 
ligands of CCR2, which is expressed in a large fraction of plasma 
cells (cluster CB1) and pDCs (cluster CB2b). These findings imply 
that kidney epithelial cells and M2-like macrophages may be coor-
dinating traffic of immune cells infiltrating the kidney. It should be 

noted though that this analysis does not cover other cell types, such 
as endothelial cells, which were not profiled here.

Comparison of urine and kidney leukocytes. Leukocytes isolated 
from urine samples of patients with LN were processed in the same 
way as kidney cells (Fig. 1a and Supplementary Fig. 1h). Following 
filtering, 577 high-quality cells, collected from 8 patients, were 
included in subsequent analyses.

We first assigned each urine cell to the kidney cluster most 
similar in its gene expression data. Urine samples had a higher 
frequency of myeloid cells (in particular cluster CM1) and fewer 
T cells than kidneys (Fig. 8a). We next compared gene expression 
across corresponding urine and kidney clusters, restricting the 
comparison to clusters with at least five urine cells. High correla-
tions were observed, typically ranging from 0.85 to 0.95 (Fig. 8b and 
Supplementary Fig. 8), suggesting that urine cells can serve to esti-
mate gene expression in their kidney counterparts.

Discussion
Using single-cell transcriptomics to study kidney samples obtained 
from patients with LN and living donor controls, we reveal the com-
plexity of immune populations in LN kidneys, identifying multiple 
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disease-specific subsets of myeloid, NK, T and B cells, and giving 
rise to several observations. We found: (1) evidence for within-tissue 
differentiation of inflammatory CD16+ macrophages into M2-like 
cells, which may orchestrate the renal infiltration and retention of 
other leukocyte subsets; (2) an abundance of dividing CTLs and NK 
cells, indicated to be a major source of IFNγ and cytolytic mole-
cules, and lack of expression of exhaustion markers in CD8+ T cells, 
suggesting a role for cytotoxic activity in LN; (3) two additional 
populations of CD8+ T cells, which could not be easily identified 
by cell surface markers; (4) a range of B-cell activation states from 
naive cells to ABCs in the kidney; (5) an interferon response signa-
ture in infiltrating leukocytes, correlated with the same signature in 
blood; (6) frequent expression by kidney immune cells of the che-
mokine receptors CXCR4 and CX3CR1, suggesting they may serve 
as potential therapeutic targets; (7) cell subset-specific expression of 
genes associated with lupus in GWAS; and (8) a high correlation of 
gene expression in urine immune cells and corresponding kidney 
leukocytes.

Our transcriptomic analysis offered a detailed view of the T-cell 
populations in LN kidneys. The co-clustering of CD4+ TFH cells 
and FoxP3+Helios+ regulatory T  cells raises the possibility that T 
follicular regulatory cells are also present44,45. CD4+ T-cell clusters 
were not clearly associated with TH1 or TH17 signatures, suggesting 
that T-cell polarization may not be a major feature in LN. The iden-
tification of three distinct CD8+ T-cell subsets raises the question 
whether the previously reported localization pattern of CD8+ T cells 
in the kidney46 is subset-specific.

B cells are found in more than half of lupus biopsies but not in 
healthy samples47. Our finding of B cells spanning a spectrum of 
states between naive and activated cells, together with the presence 
of TFH-like cells, is consistent with the view that immune responses 
to tissue damage are being driven in situ48. Of note, activation was 

correlated with an ABC signature previously suggested to be driven 
by BCR/TLR ligands49. Understanding whether these ABCs are 
clonally expanded or enhance inflammation locally in patients with 
LN, and determining the clonal relatedness of naive, activated and 
antibody-secreting B cells will require a larger data set, combined 
with analysis of BCR sequences.

Peripheral monocytes can enter injured tissues and differenti-
ate into inflammatory and reparative/resolving macrophages50. If 
the cells are chronically exposed to damage-associated molecular 
pattern molecules (DAMPs) and endosomal TLR ligands, resolu-
tion may fail, and macrophages with mixed functions may emerge51. 
Here, the three subpopulations of CD16+ macrophages are sug-
gested to transition through an inflammatory to a resolution phase; 
such a functional switch was previously identified in a mouse model 
of acute inflammation52. Of note, we did not identify a cluster of 
infiltrating cells with high similarity to CD14+ monocytes. It is still 
unclear why some types of tissue injury recruit CD14+ macrophages 
while others recruit CD16+ macrophages; influences may include 
the types of expressed DAMPS and/or other microenvironmental 
cues such as cytokines and chemokines.

Our study demonstrates the feasibility of profiling kidney sam-
ples using single-cell transcriptomics, employing a freezing strategy 
to minimize batch effects that could mask subtle gene expression 
signatures. While this strategy may result in the loss of neutrophils 
and can alter the relative frequency of other cell subsets, we did not 
observe a major effect on gene expression due to freezing.

Despite our cohort’s relatively high diversity with respect to his-
tologic appearance and intercurrent therapies, we observed a sur-
prising number of commonalities. Furthermore, saturation analysis 
indicated that increasing the cohort size is not expected to drasti-
cally change the presented cell subset catalogue. Rather, such an 
increase can enable investigating how the presence and transcription  
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profiles of particular cell infiltrates are related to disease manifes-
tations and treatment responses. A study currently in progress, 
performed as part of the AMP RA/SLE consortium, will utilize the 
sample processing strategy developed here to analyze a much larger 
cohort, addressing these questions. Furthermore, profiling stromal 
renal cells together with leukocytes will elucidate their interactions. 
The results discovered in such studies will be further validated using 
tissue staining, functional studies in cell lines or primary human 
cells, and animal models of disease.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41590-019-0398-x.
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Methods
Human kidney tissue, urine and blood acquisition. Renal tissue, urine and blood 
specimens from patients with LN were acquired at ten clinical sites in the United 
States. Institutional review board approval was received at each site. Research 
biopsy cores were collected from consented subjects either as an additional 
biopsy pass obtained specifically for research during a clinically indicated biopsy 
procedure (nine sites), or as a portion of a biopsy specimen acquired for diagnostic 
pathology during a clinically indicated biopsy procedure (one site). Control kidney 
samples were obtained at a single site by biopsy of a living donor kidney after 
removal from the donor and before implantation in the recipient.

After acquisition, kidney biopsy samples were placed into HypoThermosol 
FRS preservation solution for 10–30 min on ice and then transferred to a cryovial 
containing 1 ml CryoStor CS10 cryopreservation medium (BioLife Solutions). The 
cryovial was incubated on ice for 20–30 min and was then placed in a Mr Frosty 
freezing container (Nalgene, catalog no. 5100-0001) and transferred to a −80 °C 
freezer overnight. Cryopreserved samples were then stored in liquid nitrogen and 
shipped on dry ice to the central processing site, where they were stored in liquid 
nitrogen until processing.

Kidney tissue thawing and dissociation into a single-cell suspension. Kidney 
samples were thawed and processed in batches of four samples, with most batches 
containing both LN and control kidney samples. The cryovial containing the 
kidney tissue was rapidly warmed in a 37 °C water bath until almost thawed. 
The sample was then poured into a well of a 24-well dish and rinsed in a second 
well containing warmed RPMI/10% FBS. The tissue was incubated for 10 min 
at room temperature. Specimens were cut into 2–3 pieces and placed into a 1.5-
ml centrifuge tube containing 445 μl Advanced DMEM/F-12 (ThermoFisher 
Scientific, catalog no. 12634-028) and 5 μl DNase I (Roche, catalog no. 
04536282001, 100 U ml−1 final concentration). Then, 50 μl Liberase TL (Roche, 
catalog no. 05401020001, 250 μg ml−1 final concentration) was added, and the tube 
was placed on an orbital shaker (300–500 r.p.m.) at 37 °C for 12 min. At 6 min into 
the digestion, the mixture was gently pipetted up and down several times using 
a cut 1-ml pipette tip. After 12 min, 500 μl RPMI/10% FBS was added to stop 
the digestion. The resulting cell suspension was filtered through a 70-µm filter 
into a new 1.7-ml microfuge tube. The cells were washed with RPMI/10% FBS, 
centrifuged at 300g at 4 °C for 10 min and resuspended in cold PBS for downstream 
analyses. Quantification of cell yields was performed by hemocytometer with 
trypan blue exclusion and by flow cytometry with propidium iodide exclusion. 
Yields of cell subsets (leukocytes, epithelial cells) were quantified by acquiring the 
entire sample through the flow sorter and plotting the number of intact, PI− cell 
events with the appropriate surface markers. Cell yields were normalized to input 
tissue mass.

Urine cell pellet collection and cryopreservation protocol. Midstream urine 
samples were collected from patients with LN before kidney biopsy. The total urine 
volume (15–90 ml) was split into 2 50-ml Falcon tubes. Urine cells were pelleted by 
centrifugation at 200g for 10 min, and then resuspended in 1 ml cold X-VIVO10 
medium (Lonza BE04-743Q). Cells were transferred to a microcentrifuge tube, 
washed once in 1 ml X-VIVO10 medium and then resuspended in 0.5 ml cold 
CryoStor CS10. Cells were transferred into a 1.8-ml cryovial, placed in a Mr Frosty 
freezing container, stored in at −80 °C overnight and then transferred to liquid 
nitrogen. For downstream analyses, cryopreserved urine cells were rapidly thawed 
by vigorous shaking in a 37 °C water bath, transferred into warm RPMI/10% FBS, 
centrifuged at 300g for 10 min and resuspended in cold HBSS/1% BSA.

Flow cytometric cell sorting of kidney and urine samples. An 11-color 
flow cytometry panel was developed to identify epithelial cells and leukocyte 
populations within dissociated kidney cells. Antibodies include anti-CD45-
FITC (HI30), anti-CD19-PE (HIB19), anti-CD11c-PerCP/Cy5.5 (Bu15), anti-
CD10-BV421 (HI10A), anti-CD14-BV510 (M5E2), anti-CD3-BV605 (UCHT1), 
anti-CD4-BV650 (RPA-T4), anti-CD8-BV711 (SK1), anti-CD31-AlexaFluor700 
(WM59), anti-PD-1-APC (EH12.2H7) and propidium iodide (all from BioLegend). 
Kidney or urine cells were incubated with antibodies in HBSS/1% BSA for 30 min. 
Cells were washed once in HBSS/1% BSA, centrifuged and passed through a 
70-μm filter. Cells were sorted on a three-laser BD FACSAria Fusion cell sorter. 
Intact cells were gated according to forward scatter and side scatter area (FSC-A 
and SSC-A). Doublets were excluded by serial FSC-H/FSC-W and SSC-H/SSC-W 
gates (H, height; W, width). Non-viable cells were excluded based on propidium 
iodide uptake. Cells were sorted through a 100-μm nozzle at 20 psi (0.138 MPa). 
For each sample, 10% of the sample was allocated to sort CD10+CD45− epithelial 
cells as single cells, and the remaining 90% of the sample was used to sort CD45+ 
leukocytes as single cells. Single cells were sorted into 384-well plates containing 
0.6 µl 1% NP-40 with index sorting, and plates were immediately frozen and stored 
at −80 °C. Flow cytometric quantification of cell populations was performed using 
FlowJo v.10.0.7.

Library preparation and RNA sequencing of kidney and urine samples. scRNA-
seq was performed using the CEL-Seq2 method10 with the following modifications. 
Single cells were sorted into 384-well plates containing 0.6 µl 1% NP-40 buffer 

in each well. Then, 0.6 µl dNTPs (10 mM each; NEB) and 5 nl barcoded reverse 
transcription primer (1 µg µl−1) were added to each well along with 20 nl ERCC 
spike-in (diluted 1:800,000). Reactions were incubated at 65 °C for 5 min, and 
then moved immediately to ice. Reverse transcription reaction and second-strand 
complementary DNA (cDNA) synthesis were carried out as previously described10, 
and double-stranded c-DNA was purified using 0.8× volumes of AMPure XP 
beads (Beckman Coulter). In vitro transcription reactions were performed 
as described followed by treatment with ExoSAP-IT PCR Product Cleanup 
Reagent (ThermoFisher Scientific, catalog no. 78201.1.ML). Amplified RNA was 
fragmented at 80 °C for 3 min and purified using RNAClean XP beads (Beckman 
Coulter). The purified amplified RNA was converted to cDNA using an anchored 
random primer and Illumina adaptor sequences were added by PCR. The final 
cDNA library was purified using AMPure XP beads (Beckman Coulter). Paired-
end sequencing of ~1 million paired-end reads per cell was performed on the 
HiSeq 2500 in Rapid Run Mode with a 5% PhiX spike-in using 15 bases for Read1, 
6 bases for the Illumina index and 36 bases for Read2.

Frozen needle core biopsies obtained from two additional healthy donor 
kidneys before reperfusion were processed as above to produce single-cell 
suspensions. Unsorted cells in 0.04% BSA (Sigma) were used to generate single-cell 
libraries with the Chromium Single Cell Gene Expression system using 3′ Library 
& Gel Bead Kit v2 (10X Genomics) and paired-end sequencing was performed on 
a HiSeq X.

Processing of blood samples. For profiling blood cells, blood was collected from 
10 patients with LN before kidney biopsy and peripheral blood mononuclear cells 
(PBMCs) were isolated using Ficoll-Paque PLUS (GE Healthcare) density gradient 
centrifugation in 15-ml SepMate tubes (Stemcell) according to manufacturer 
instructions and cryopreserved in CryoStor CS10 Freezing Media (STEMCELL 
Technologies). Sex-matched PBMCs from healthy donors isolated and cryopreserved 
at the University of North Carolina Kidney Center were used as controls.

For bulk RNA-seq experiments, thawed cells were stained with antibodies 
against CD45-PE (HI30), CD3-PE/Cy7 (UCHT1) and CD8a-APC (HIT8a). 
Five thousand viable (DAPI−) PBMC (CD45+) or 1,000–5,000 CD8+ T cells 
(CD45+CD3+CD8+) were sorted into microcentrifuge tubes containing 20 μl 
TCL buffer (Qiagen) supplemented with 1% b-mercaptoethanol (Sigma) using 
a Sony SH800S cell sorter, and the lysate was frozen and stored at −80 °C. Of ten 
patients with LN, eight had enough CD8+ T cells to allow sequencing. RNA was 
isolated with Agencourt RNAClean XP beads (Beckman Coulter) and converted to 
sequencing libraries using the Smart-seq2 method53. Thirty-eight-base-pair paired-
end reads were generated on a Nextseq500 (Illumina).

For droplet-based scRNA-seq, thawed cells were stained with antibodies from 
BioLegend: CD3-FITC (HIT3a), CD19-FITC (HIB19), CD20-FITC (2H7), CD56-
FITC (HCD56), HLADR-PE/Dazzle (L243) and CD16-PerCP/Cy5.5 (3G8); and 
from BD Biosciences: CD14-APC/Cy7 (MφP9). Viable (DAPI−) monocytes (CD3−, 
CD19−, CD20−, CD56−, HLADR+, CD14+ or CD16+) were sorted into RPMI (Life 
Technologies) + 0.04% BSA (Sigma) and single-cell libraries were generated using 
the Chromium Single Cell Gene Expression system using 3′ Library & Gel Bead Kit 
v2 (10X Genomics). Paired-end sequencing was performed on a Nextseq500.

RNA-seq data processing. For the cells processed using CEL-Seq2, we used a 
modified version of the Drop-seq pipeline developed by the McCarroll laboratory54 
to perform all steps necessary to produce gene by cell expression matrices of reads 
as well as unique molecular identifiers (UMIs). These steps include demultiplexing, 
quality filtering, polyA and adapter trimming, aligning and collapsing reads 
with unique combinations of cell + gene + UMI. We used STAR-2.5.1b to align 
reads to the Hg19 human genome reference. Only uniquely mapped reads were 
counted. UMIs with fewer than ten reads were filtered out before creating the final 
expression matrices, to minimize read cross-contamination across cells. For each 
cell, the computed gene expression counts were then normalized for read depth 
and log-transformed. For cells processed using 10X, sequencing output was aligned 
using the 10X standard pipeline.

Cell filtering and quality control. For kidney cells processed using CEL-Seq2, 
high-quality cells were defined as having at least 1,000 detected genes (that is, with 
positive count values); for urine cells, which tended to have fewer detectable genes, 
this threshold was set to 500 genes; for cells processed using 10X, the threshold 
used was 250 genes. We further required the percentage of reads mapped to 
mitochondrial genes per cell to be lower than 25% (8% for blood cells processed 
using 10X). To remove wells that were suspected to contain messenger RNA from 
multiple cells, we required the number of genes per cell to be smaller than 5,000 for 
the kidney cells processed using CEL-Seq2; 4,000 for urine cells; 1,700 for blood 
cells processed using 10X; and 3,500 for the kidney cells processed using 10X (all 
thresholds were set based on empirical distributions).

To minimize the effect of technical factors, we tested different regression 
models, taking into account such variables as the plate identifier, number of UMIs 
per cell and the percentage of mitochondrial genes per cell. We found that using 
such models had a negligible effect on the gene by cell expression matrix, as well as 
the overall results of clustering. We therefore decided to avoid employing them in 
cleaning the data for subsequent analyses.
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In the analysis of myeloid blood cells, initial comparison to the gene expression 
data of immune cell subsets in FANTOM5 was performed to further validate their 
myeloid cell identify, in addition to filtering based on flow cytometry cell sorting.

Cell clustering. Clustering of kidney cells was done using Seurat (v.1.4.0.8)55, in a 
stepwise manner. We initially performed low-resolution clustering, analyzing  
all cells together, then labeled each of the resulting clusters as myeloid cells,  
T/NK cells, B cells, dividing cells or epithelial cells. The cells of each such general 
class were then analyzed separately, to identify finer clusters. In some cases, as 
described in the main text, the resulting clusters were further split into subclusters. 
In each case, clustering was done following principal component analysis, based on 
context-specific variable genes that were identified independently for each set of 
analyzed cells.

Sensitivity analysis was performed in each clustering step, with a particular 
focus on the low-resolution clustering stage. Briefly, all parameters in the 
clustering process, including the number of variable genes and principal 
components considered, were varied, and the robustness of the results was 
determined. To assess this robustness, we estimated in each case the Rand index: 
looking at a large number (1,000) of random pairs of cells, we counted how many 
pairs were either included in the same cluster in both of the compared clustering 
runs, or not included in the same cluster, and referred to these as consistent 
pairs; we then calculated the fraction of consistent pairs of all random cell pairs 
considered. We repeated this procedure 100 times, to calculate the mean of the 
Rand index estimate.

Classification by correlation. In determining their putative identity, we 
compared the gene expression of individual cells with external gene expression 
data sets of reference samples. In each comparison, we computed the Pearson 
correlation between the log-transformed gene expression data of the cell and the 
reference sample, and chose the reference sample that produced the maximal 
correlation value (using Spearman correlation instead of Pearson correlation 
did not drastically change the classification results). To assess the confidence 
in this classification, we computed in each case an ‘assignability threshold’: we 
generated 1,000 ‘random cells’, by averaging for each gene the raw counts across 
the classified cells using random weights, such that the sum of weights for each 
gene was 1; we then normalized the sum of counts to 10,000. For each random cell, 
we identified the most similar reference sample, and recorded the corresponding 
Pearson correlation. The assignability threshold was set to the 95th percentile of 
the distribution of these Pearson correlations. We note that this approach preserves 
the main aspects of the original data; in particular, highly expressed genes (such as 
house-keeping genes) remain high in the generated random cells.

Myeloid cells were compared with the scRNA-seq data published in  
Villani et al.12, such that each cluster in that study was represented by the average 
expression over the cells included in it, taking into account only genes showing 
high variability in that data set. Similar results were found if all genes, or only 
cluster markers, were considered. Comparison to FANTOM5 and the data from 
Browne et al. was done based on the median of reference sample replicates, 
considering all genes.

Differential expression analysis. Identification of genes differentially expressed 
between patients with LN and living donor controls was done using the framework 
proposed by McDavid et al.56, as implemented by Seurat. P values were corrected 
for multiple comparisons using the Benjamini–Hochberg method57. For each gene 
with a corrected P value smaller than 0.05 (‘candidate differentially expressed 
genes’), a further correction for the number of patients was performed: 1,000 
random permutations of patients across the 2 groups were generated, while keeping 
the number of patients in each group fixed. For each candidate differentially 
expressed gene and each random permutation, the McDavid test statistic 
was computed as above. We then calculated a new P value for each candidate 
differentially expressed gene, defined as the fraction of random permutations in 
which the value of the test statistic was more extreme than its value in the original 
partition of patients between groups (while adding 1 to both numerator and 
denominator). Finally, the new P values were corrected for multiple comparisons 
using the Benjamini–Hochberg method. This analysis was performed separately 
for each cluster with at least 20 cells in both patient groups.

Trajectory analysis. Trajectory analysis was performed based on dimensionality 
reduction using diffusion maps, as implemented in the Destiny software package 
(v.2.6.2)21. In each case, only the cells relevant to the question at hand were analyzed.

Calculation of gene set-based scores. Scores based on specific gene sets (for 
example, interferon response score, ABC score, etc.) were calculated for each cell 
as the average of the scaled (Z-normalized) expression of the genes in the list. 
To control for the variable quality and complexity of the data of different cells, 
the score of each cell was corrected by subtracting the average of a large set of 
similarly expressed genes, as proposed by Tirosh et al.58. When the list contained 
genes that are expected to be upregulated in a particular condition and genes that 

are expected to be downregulated in it (as was the case for the ABC score), the 
average of scaled expression was calculated separately for each set of genes, and 
the difference between the scores of the upregulated genes and the downregulated 
genes was taken as the overall score. A similar approach was used when calculating 
gene set-based scores in bulk RNA-seq data. The gene sets used for particular 
scores can be found in Supplementary Table 6.

Analysis of interferon response score. To assess the statistical significance of ISGs 
upregulation per patient, an interferon response score was calculated for each cell 
based on a given list of ISGs, as explained above. For each patient with LN, the 
distribution of the calculated scores was compared with that of cells collected from 
living donor controls, using the two-tailed Mann–Whitney U-test. The derived 
P values were then corrected for multiple comparisons, using the Benjamini–
Hochberg method57. A similar approach was used when comparing the distribution 
of ISG scores per cluster in the patients with LN, as compared with the living donor 
cells taken as a whole.

Analysis of GWAS gene expression. We analyzed the expression patterns of 180 
genes previously reported in GWASs of either SLE or LN. For each such gene, 
we calculated its average scaled (Z-normalized) expression in each cell cluster, 
taking into account only cells coming from LN samples. For biclustering of GWAS 
genes and cell clusters, we kept only genes that had an average scaled expression 
value of more than 1 or less than −1 in at least 1 cell cluster, such that biclustering 
was based only on the GWAS genes that were relatively variable in our data. 
Biclustering was then performed, based on the average scaled expression in each 
cell cluster and using a Euclidean distance metric.

Analysis of chemokine/cytokine receptors. Analysis of chemokine/cytokine 
receptors was based on a receptor–ligand pairs list downloaded from the 
International Union of Basic and Clinical Pharmacology (IUPHAR) and British 
Pharmacological Society (BPS) database59 and extended manually to incorporate a 
number of missing, previously published pairs. For each receptor, we calculated the 
percentage of cells expressing it in each cell cluster, where a receptor was said to be 
expressed by a cell if it had at least one mapped read (the results reported here were 
found to be robust to changes in this threshold). For biclustering of receptors and 
cell clusters, we kept only receptors that appeared in at least 30% of the cells in at 
least 1 cluster.

Assignment of urine cells to kidney clusters. For each urine cell, we computed 
its Pearson correlation with each kidney cluster, taking the average over the kidney 
cells included in the cluster. The urine cell was then assigned to the cluster that 
produced the highest correlation value.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data reported in this publication, including the clinical and serological data 
of the study participants, are deposited in the ImmPort repository (accession code 
SDY997). The raw single-cell RNA-seq data are also deposited in dbGAP (accession 
code phs001457.v1.p1). The processed data can be viewed using an interactive 
browser at https://immunogenomics.io/ampsle, https://immunogenomics.io/
cellbrowser/ and https://portals.broadinstitute.org/single_cell/study/amp-phase-1.

Code availability
All R scripts used to analyze the data reported in this publication are available from 
the corresponding authors on request.
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